Bandpass filter based on microstrip resonators with additional galvanic coupling
Belyaev B. A.1,2, Serzhantov A. M. 1,2, Shumilov T. Y.2,3, Bal’va Ya. F.3, Aleksandrovsky A. A.3, Khodenkov S. A.1
1Siberian State University of Science and Technology, Krasnoyarsk, Russia
2Siberian Federal University, Krasnoyarsk, Russia
3Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
Email: belyaev@iph.krasn.ru, a.a.aleksandrovskiy@gmail.com, hsa1982sibsau@mail.ru

PDF
An expression is obtained for the coupling coefficient of microstrip resonators with inductive, capacitive, and galvanic interaction caused by an additional inductive element. It is shown that the capacitive coupling coefficient has a sign opposite to the galvanic coupling coefficient, and the inductive coupling coefficient can have both a positive and negative sign. Theoretically and experimentally, using two-order microstrip filters with the same conductor topology, the possibility of significantly increasing the bandwidth due to the introduction of galvanic coupling, as well as mutual compensation of three types of couplings, leading to the disappearance of the first passband, has been demonstrated. A sixth-order bandpass filter based on quarter-wave microstrip resonators with additional galvanic coupling has high frequency-selective properties due to the appearance of two transmission zeros on either side of the passband. The developed filter is made on a substrate with a permittivity ε=80, thickness 2 mm and dimensions 25x 50 mm. The central frequency of the filter passband is f0=0.5 GHz, and its fractional bandwidth Δ f/f0=15%. Keywords: dielectric substrate, microstrip resonator, coupling coefficients, oscillation mode.
  1. J-S. Hong, Microstrip filters for RF/microwave applications (John Wiley \& Sons, 2011)
  2. B.A. Belyaev, A.M. Serzhantov, Y.F. Bal'va, V.V. Tyurnev, A.A. Leksikov, R.G. Galeev, Microwave Opt. Technol. Lett., 56 (9), 2021 (2014). DOI: 10.1002/mop.28507
  3. B.A. Belyaev, A.M. Serzhantov, I.E. Burlakov, A.A. Leksikov, Ya.F. Bal'va, A.A. Alexandrovsky, S.D. Krekov, S.A. Khodenkov, Tech. Phys. Lett., 50 (8), 4 (2024).
  4. R.M. Kurzrok, IEEE Trans. Microwave Theory Tech., 14 (6), 295 (1966). DOI: 10.1109/TMTT.1966.1126254
  5. Y. Wang, M. Yu, IEEE Trans. Microwave Theory Tech., 57 (12), 2958 (2009). DOI: 10.1109/TMTT.2009.2034221
  6. M. Latif, G. Macchiarella, F. Mukhtar, IEEE Access., 8 (7), 107527 (2020). DOI: 10.1109/ACCESS.2020.3000847
  7. B.A. Belyaev, A.M. Serzhantov, Y.F. Bal'va, R.G. Galeev, An.A. Leksikov, IEEE Trans. Compon. Packag. Manuf. Technol., 12 (7), 1186 (2022). DOI: 10.1109/TCPMT.2022.3183581
  8. V.V. Tyurnev, B.A. Belyaev, Elektron. Tekh. Ser. Elektron. SVCh, No. 4 (428), 25 (1990) (in Russian)
  9. G.L. Matthaei, L. Young, E.M.T. Jones, Microwave filters, impedance-matching networks and coupling structures (McGraw-Hill, N.Y., 1964)
  10. J.-S. Hong, M.J. Lancaster, IEEE Trans. Microwave Theory Tech., 45 (12), 2358 (1997). DOI: 10.1109/22.643844
  11. B.A. Belyaev, M.M. Titov, V.V. Tyurnev, Radiophys. Quantum Electron., 43 (8), 649 (2000). DOI: 10.1023/A:1004813504573.
  12. B.A. Belyaev, I.V. Govorun, A.A. Leksikov, A.M. Serzhantov, Tech. Phys. Lett., 38 (3), 211 (2012). DOI: 10.1134/S1063785012030066
  13. A.M. Serzhantov, N.A. Drokin, Izv. Vyssh. Uchebn. Zaved., Fiz., 51 (9/2), 211 (2008) (in Russian)
  14. A.M. Serzhantov, Izv. Vyssh. Uchebn. Zaved., Fiz., 51 (9/2), 262 (2010) (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru