Microwave discharge in the lunar dust simulant with the addition of ammonium carbonate for studying prebiological synthesis
Borzosekov V. D.
1,2, Gudkova V. V.
1,2, Zaitsev M. A.
3, Morozova T. I.
3, Sokolov A. S.
1, Knyazev A. V.
1, Letunov A. A.
1, Skvortsova N. N.
1, Rezaeva A. D.
1,2, Malakhov D. V.
1, Titov V. A.
4, Stepakhin V. D.
11Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
2Russian Peoples’ Friendship University, Moscow, Russia
3Institute of Space Research, Russian Academy of Sciences, Moscow, Russia
4G.A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Ivanovo, Russia
Email: borzosekov@fpl.gpi
Using a microwave discharge, plasma-dust clouds were obtained in an environment of gases and vapors that could have been present in the atmosphere of the early Earth. The source of H2O, NH3 and CO2 molecules were decomposition processes under the action of a discharge of ammonium carbonate added to the main material under study - the LMS-1D lunar dust simulant. The discharge emission spectra showed the appearance of molecular bands OH, NH, CN, C2 in the plasma-dust cloud. By comparing the experimental and calculated contours of the bands corresponding to the electronic-vibrational transitions CN (B2Σ-> X2Σ, Δν=0), the vibrational (Tv=5000 K) and rotational (Tr=2500 K) temperatures of CN (B2Σ) were found. Keywords: prebiological synthesis, Earth's early atmosphere, microwave discharge, lunar dust simulant.
- S.L. Miller, Science, 117 (3046), 528 (1953). DOI: 10.1126/science.117.3046.528
- G.G. Managadze, JETP, 97 (1), 49 (2003). DOI: 10.1134/1.1600796
- M. Ferus, P. Rimmer, G. Cassone, A. Knsek, S. Civivs, J.E. vSponer, O. Ivanek, J. vSponer, H. Saeidfirozeh, P. Kubeli k, R. Dudvzak, L. Petera, L. Juha, A. Pastorek, A. Kvrivkova, M. Krus, Astrobiology, 20 (12), 1476 (2020). DOI: 10.1089/ast.2020.2231
- M.A. Zaitsev, M.V. Gerasimov, E.N. Safonova, A.S. Vasiljeva, Sol. Syst. Res., 50 (2), 113 (2016). DOI: 10.1134/S0038094616020076
- Z. Martins, M.C. Price, N. Goldman, M.A. Sephton, M.J. Burchell, Nat. Geosci., 6, 1045 (2013). DOI: 10.1038/ngeo1930
- G.M. Batanov, I.A. Kossyi, Plasma Phys. Rep., 41 (10), 847 (2015). DOI: 10.1134/S1063780X15090020
- N.N. Skvortsova, D.V. Malakhov, V.D. Stepakhin, S.A. Maiorov, G.M. Batanov, V.D. Borzosekov, E.M. Konchekov, L.V. Kolik, A.A. Letunov, E.A. Obraztsova, A.E. Petrov, D.O. Pozdnyakov, K.A. Sarksyan, A.A. Sorokin, G.V. Ukryukov, N.K. Kharchev, JETP Lett., 106 (4), 262 (2017). DOI: 10.1134/S0021364017160135
- J.M. Long-Fox, D.T. Britt, Front. Space Technol., 4, 1255535 (2023). DOI: 10.3389/frspt.2023.1255535
- K.V. Artem'ev, G.M. Batanov, N.K. Berezhetskaya, V.D. Borzosekov, L.V. Kolik, E.M. Konchekov, I.A. Kossyi, D.V. Malakhov, A.E. Petrov, K.A. Sarksyan, V.D. Stepakhin, N.K. Kharchev, JETP Lett., 107 (4), 219 (2018). DOI: 10.1134/S0021364018040045
- A. Sidorov, S. Razin, A. Veselov, M. Viktorov, A. Vodopyanov, A. Luchinin, M. Glyavin, Phys. Plasmas, 27 (9), 093509 (2020). DOI: 10.1063/5.0012583
- J. Luque, D.R. Crosley, LIFBASE: Database and Spectral Simulation Program (Version 1.5), SRI International Report MP 99-009 (1999). https://www.sri.com/engage/products-solutions/lifbase
- M.V. Gerasimov, E.N. Safonova, in Problemy zarozhdeniya i evolyutsii biosfery, Ed. by E.M. Galimov (LIBROKOM, M., 2008), pp. 145-153 (in Russian).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.