Study of electrical resistance of gallium films on reconstructed Si(111) surface
Tsukanov D. A. 1,2, Ryzhkova M. V. 1
1Institute of Automation and Control Processes, Far East Branch, Russian Academy of Sciences, Vladivostok, Russia
2Far Eastern Federal University, Vladivostok, Russia
Email: tsukanov@iacp.dvo.ru, ryzhkova@iacp.dvo.ru

PDF
The results of a study of the crystal structure and electrical resistance of Si(111) silicon substrates after gallium deposition onto preformed surface reconstructions in the Ga/Si(111), Tl/Si(111), Au/Si(111) systems are presented. The work used the low-energy electron diffraction method to study changes in the structure of the surface crystal lattice, as well as a four-point probe method to measure the electrical resistance of substrates under in situ conditions. The influence of the concentration of adsorbed gallium atoms on the structural and electrical properties of films is considered. The role of surface reconstructions as a buffer layer for the subsequent growth of ultrathin films is demonstrated. Keywords: adsorption, surface reconstruction, surface conductivity, low-energy electron diffraction, four-point probe method for measuring substrate resistance.
  1. W.F. Leonard, S.F. Lin. Thin Solid Films, 28, L9 (1975). DOI: 10.1016/0040-6090(75)90285-0
  2. C.B. Duke. Appl. Surf. Sci., 65/66, 543 (1993). DOI: 10.1016/0169-4332(93)90717-P
  3. V.G. Lifshits, A.A. Saranin, A.V. Zotov. Surface Phases on Silicon (Chichester, Wiley, 1993)
  4. H.W. Yeom, S. Takeda, E. Rotenberg, I. Matsuda, K. Horikoshi, J. Schaefer, C.M. Lee, S.D. Kevan, T. Ohta, T. Nagao, S. Hasegawa. Phys. Rev. Lett., 82, 4898 (1999). DOI: 10.1103/PhysRevLett.82.4898
  5. E. Rotenberg, H. Koh, K. Rossnagel, H.W. Yeom, J. Schafer, B. Krenzer, M.P. Rocha, S.D. Kevan. Phys. Rev. Lett., 91, 246404 (2003). DOI: 10.1103/PhysRevLett.91.246404
  6. K. Sakamoto, H. Kakuta, K. Sugawara, K. Miyamoto, A. Kimura, T. Kuzumaki, N. Ueno, E. Annese, J. Fujii, A. Kodama, T. Shishidou, H. Namatame, M. Taniguchi, T. Sato, T. Takahashi, T. Oguchi. Phys. Rev. Lett., 103, 156801 (2009). DOI: 10.1103/PhysRevLett.103.156801
  7. T. Uchihashi, P. Mishra, M. Aono, T. Nakayama. Phys. Rev. Lett., 107, 207001 (2011). DOI: 10.1103/PhysRevLett.107.207001
  8. Y. Fukuya, I. Matsuda, M. Hashimoto, K. Kubo, T. Hirahara, S. Yamazaki, W.H. Choi, H.W. Yeom, S. Hasegawa, A. Kawasuso, A. Ichimiya. Surf. Sci., 606, 919 (2012). DOI: 10.1016/j.susc.2012.02.006
  9. I. Matsuda, F. Nakamura, K. Kubo, T. Hirahara, S. Yamazaki, W.H. Choi, H.W. Yeom, H. Narita, Y. Fukuya, M. Hashimoto, A. Kawasuso, M. Ono, Y. Hasegawa, S. Hasegawa, K. Kobayashi. Phys. Rev. B, 82, 165330 (2010). DOI: 10.1103/PhysRevB.82.165330
  10. V.G. Kotlyar, A.V. Zotov, A.A. Saranin, T.V. Kasyanova, M.A. Cherevik, I.V. Pisarenko, V.G. Lifshits. Phys. Rev. B, 66, 165401 (2002). DOI: 10.1103/PhysRevB.66.165401
  11. K. Oura, V.G. Lifshits, A.A. Saranin, A.V. Zotov, M. Katayama. Surf. Sci. Reps., 35, 1 (1999). DOI: 10.1016/S0167-5729(99)00005-9
  12. D.A. Tsukanov, M.V. Ryzhkova, D.V. Gruznev, O.A. Utas, V.G. Kotlyar, A.V. Zotov, A.A. Saranin. Nanotechnology, 19, 245608 (2008). DOI: 10.1088/0957-4484/19/24/245608
  13. H.-M. Zhang, Y. Sun, W. Li, J.-P. Peng, C.-L. Song, Y. Xing, Q. Zhang, J. Guan, Y. Zhao, S. Ji, L. Wang, K. He, X. Chen, L. Gu, L. Ling, M. Tian, L. Li, X.C. Xie, J. Liu, H. Yang, Q.-K. Xue, J. Wang, X. Ma. Phys. Rev. Lett., 114, 107003 (2015). DOI: 10.1103/PhysRevLett.114.107003
  14. N. Briggs, B. Bersch, Y. Wang, J. Jiang, R.J. Koch, N. Nayir, K. Wang, M. Kolmer, W. Ko, A.D.L.F. Duran, S. Subramanian, C. Dong, S. Shallenberger, M. Fu, Q. Zou, Y.-W. Chuang, Z. Gai, A.-P. Li, A. Bostwick, C. Jozwiak, C.-Z. Chang, E. Rotenberg, J. Zhu, A.C.T. van Duin, V. Crespi, J.A. Robinson. Nat. Mater., 19, 637 (2020). DOI: 10.1038/s41563-020-0631-x
  15. D.Z. Metin, L. Hammerschmidt, N. Gaston. Phys. Chem. Chem. Phys., 20, 27668 (2018). DOI: 10.1039/c8cp05280h
  16. L.V. Bondarenko, A.Y. Tupchaya, Y.E. Vekovshinin, D.V. Gruznev, V.G. Kotlyar, T.V. Utas, A.N. Mihalyuk, N.V. Denisov, A.V. Zotov, A.A. Saranin. J. Alloys Compd., 969, 172453 (2023). DOI: 10.1016/j.jallcom.2023.172453
  17. H. Okamoto, M.E. Schlesinger, E.M. Mueller. ASM Handbook Volume 3: Alloy Phase Diagrams (ASM International, 2016)
  18. M.Y. Lai, Y.L. Wang. Phys. Rev. B, 60, 1764 (1999). DOI: 10.1103/PhysRevB.60.1764
  19. E.Z. Luo, S. Heun, M. Kennedy, J. Wollschlager, M. Henzler. Phys. Rev. B, 49, 4858 (1994). DOI: 10.1103/PhysRevB.49.4858
  20. T. Kanagawa, R. Hobara, I. Matsuda, T. Tanikawa, A. Natori, S. Hasegawa. Phys. Rev. Lett., 91, 036805 (2003). DOI: 10.1103/PhysRevLett.91.036805
  21. D.A. Tsukanov, S.G. Azatyan, M.V. Ryzhkova, E.A. Borisenko, O.A. Utas, A.V. Zotov, A.A. Saranin. Appl. Surf. Sci., 476, 1 (2019). DOI: 10.1016/j.apsusc.2019.01.063
  22. D.V. Gruznev, D.A. Olyanich, D.N. Chubenko, D.A. Tsukanov, E.A. Borisenko, L.V. Bondarenko, M.V. Ivanchenko, A.V. Zotov, A.A. Saranin. Surf. Sci., 603, 3400 (2009). DOI: 10.1016/j.susc.2009.10.001
  23. S. Hasegawa, X. Tong, S. Takeda, N. Sato, T. Nagao. Prog. Surf. Sci., 60, 89 (1999). DOI: 10.1016/S0079-6816(99)00008-8
  24. O. Pfennigstorf, K. Lang, H.-L. Gunter, M. Henzler. Appl. Surf. Sci., 162, 537 (2000). DOI: 10.1016/S0169-4332(00)00247-6
  25. S. Hasegawa, S. Ino. Surf. Sci., 283, 438 (1993). DOI: 10.1016/0039-6028(93)91016-I
  26. P. Kumar, M. Kumar, B.R. Mehta, S.M. Shivaprasad. Appl. Surf. Sci., 256, 480 (2009). DOI: 10.1016/j.apsusc.2009.07.036
  27. L.V. Bondarenko, A.Y. Tupchaya, Y.E. Vekovshinin, D.V. Gruznev, A.N. Mihalyuk, D.V. Denisov, A.V. Matetskiy, D.A. Olyanich, T.V. Utas, V.S Zhdanov, A.V. Zotov, A.A. Saranin. Mol. Syst. Des. Eng., 8, 604 (2023). DOI: 10.1039/d2me00251e
  28. M.L. Tao, Y.B. Tu, K. Sun, Y.L. Wang, Z.B. Xie, L. Liu, M.X. Shi, J.Z. Wang. 2D Mater., 5, 035009 (2018). DOI: 10.1088/2053-1583/aaba3a
  29. M. Jalochowski, E. Bauer. Surf. Sci., 213, 556 (1989). DOI: 10.1016/0039-6028(89)90312-9
  30. S.S. Lee, H.J. Song, N.D. Kim, J.W. Chung, K. Kong, D. Ahn, H. Yi, B.D. Yu, H. Tochihara. Phys. Rev. B, 66, 233312 (2002). DOI: 10.1103/PhysRevB.66.233312
  31. A.N. Mihalyuk, L.V. Bondarenko, A.Y. Tupchaya, D.V. Gruznev, J.-P. Chou, C.-R. Hsing, C.-M. Wei, A.V. Zotov, A.A. Saranin. Surf. Sci., 668, 17 (2018). DOI: 10.1016/j.susc.2017.10.010
  32. S. Ichinokura, L.V. Bondarenko, A.Y. Tupchaya, D.V. Gruznev, A.V. Zotov, A.A. Saranin, S. Hasegawa. 2D Mater., 4, 025020 (2017). DOI: 10.1088/2053-1583/aa57f9
  33. Y. Ke, F. Zahid, V. Timoshevskii, R. Xia, D. Gall, H. Guo. Phys. Rev. B, 79, 155406 (2009). DOI: 10.1103/PhysRevB.79.155406
  34. T. Yamanaka, S. Ino. Phys. Rev. Lett., 89, 196101 (2002). DOI: 10.1103/PhysRevLett.89.196101
  35. L.V. Bondarenko, A.N. Mihalyuk, A.Y. Tupchaya, Y.E. Vekovshinin, D.V. Gruznev, A.V. Zotov, A.A. Saranin. Phys. Rev. B, 101, 075405 (2020). DOI: 10.1103/PhysRevB.101.075405
  36. I. Chizhov, G. Lee, R.F. Willis. Phys. Rev. B, 56, 12316 (1997). DOI: 10.1103/PhysRevB.56.12316
  37. Fritz Haber Institute of the Max Planck Society, "LEEDpat4" software https://www.fhi.mpg.de/958975/LEEDpat4
  38. K. Oura, V.G. Lifshits, A.A. Saranin, A.V. Zotov, M. Katayama. Vvedenie v fiziku poverkhnosti (Nauka, M., 2006) (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru