Depth profiling of multilayer inhomogeneous ultra-thin films with a sub-nanometer resolution
Lubenchenko A. V. 1, Lubenchenko O. I.1, Ivanov D. A. 1, Lukyantsev D. S. 1, Pavolotsky A. B. 2, Pavolotsky A. B. 1, Ivanova I.V.1
1National Research University "MPEI", Moscow, Russia
2Chalmers University of Technology, Goteborg, Sweden
Email: lubenchenkoav@mpei.ru, IvanovaOlI@mpei.ru, IvanovDA@mpei.ru, LukyantsevDS@mpei.ru, alexey.pavolotsky@chalmers.se, pavlovthin@yandex.ru, IvanovaIV@mpei.ru

PDF
A comprehensive in situ method of non-destructive quantitative chemical phase depth profiling of multilayer multicomponent ultra-thin films on various substrates is proposed, within sub-nanometer accuracy, for depth up to few tens nanometers, based on angle-resolved X-ray photoelectron spectroscopy and photoelectron energy losses spectroscopy. Chemical phase depth profiling of air-oxidized ultra-thin niobium and niobium nitride films has been performed. Keywords: X-ray photoelectron spectroscopy, chemical and phase depth profiling, XPS background subtraction, XPS line decomposition.
  1. R.E. Galindo, R. Gago, D. Duday, C. Palacio. Analyt. Bioanalyt. Chem., 396 (8), 2725 (2010). DOI: 10.1007/s00216-009-3339-y
  2. A.V. Lubenchenko, A.A. Batrakov, A.B. Pavolotsky, O.I. Lubenchenko, D.A. Ivanov. Appl. Surf. Sci., 427, 711 (2018). DOI: 10.1016/j.apsusc.2017.07.256
  3. S. Tougaard. Surf. Sci., 216 (3), 343 (1989). DOI: 10.1016/0039-6028(89)90380-4
  4. S. Tougaard. J. Electron Spectr. Related Phenomena, 178-179, 128 (2010). DOI: 10.1016/j.elspec.2009.08.005
  5. M. Vos, P.L. Grande. Nucl. Instrum. Methods Phys. Res. Section B: Beam Interac-tions with Materials and Atoms, 407, 97 (2017). DOI: 10.1016/j.nimb.2017.05.064
  6. S. Doniach, M. Sunjic. J. Phys. C: Solid State Phys., 3 (2), 285 (1970). DOI: 10.1088/0022-3719/3/2/010
  7. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben. Handbook of X Ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Physical Electronics, 1979)
  8. A.V. Naumkin, A. Kraut-Vass, C.J. Powell. NIST X-ray Photoelectron Spectroscopy Database (2008)
  9. A.R. Miedema, R. Boom, F.R. De Boer. J. Less Common Metals, 41 (2), 283 (1975). DOI: 10.1016/0022-5088(75)90034-X
  10. S. Badrinarayanan, S. Sinha. J. Appl. Phys., 69 (3), 1141 (1991). DOI: 10.1063/1.347294
  11. K. Artyushkova, B. Kiefer, B. Halevi, A. Knop-Gericke, R. Schlogl, P. Atanassov. Chem. Commun., 49 (25), 2539 (2013). DOI: 10.1039/C3CC40324F
  12. J. Zemek, J. Houdkova, P. Jiricek, T. Izak, M. Kalbac. Appl. Surf. Sci., 491, 16 (2019). DOI: 10.1016/j.apsusc.2019.06.083
  13. A. Jablonski. Surf. Sci., 688, 14 (2019). DOI: 10.1016/j.susc.2019.05.004
  14. S. Krause, V. Afanas'ev, V. Desmaris, D. Meledin, A. Pavolotsky, V. Belitsky, A. Lubenschenko, A. Batrakov, M. Rudzinski, E. Pippel. IEEE Transactions Appl. Superconduct., 26 (3), 1 (2016). DOI: 10.1109/TASC.2016.2529432

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru