Insertion device for EUV-lithography at fourth-generation SR facility
Murzina A. V.1,2, Rakshun Ya. V.1,3, Khomyakov Yu. V.1, Chernov V. A.1
1Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State University, Novosibirsk, Russia
3Siberian State University of Telecommunications and Information Science, Novosibirsk, Russia
Email: murzina.anastasiia@yandex.ru

PDF
This paper is dedicated to the optimization of the fourth-generation storage ring insertion devices for EUV lithography. Optimal period lengths have been determined, and the APPLE-II and Delta insertion devices have been compared in circular and linear polarization modes according to spectral, power characteristics, source size, and angular divergence. The average power values of the working harmonic have been obtained: about 6 W for circular polarization and about 2.6 W - for linear polarization. The coherent properties of the generated synchrotron radiation have been evaluated: the coherent fractions have been calculated, and transverse coherence functions have been obtained. Keywords: Extreme ultra-violet lithography (EUVL), synchrotron radiation (SR), insertion device (ID), elliptical polarized undulator (EPU), partially coherent radiation.
  1. B. Hansson. Laser-Plasma Sources for Extreme-Ultraviolet Lithography (Fysik, Stockholm, 2003)
  2. E.B. Levichev, A.N. Zhuravlev, K.V. Zolotarev, Ya.V. Zubavichus, K.I. Schaefer. Tekhnologicheskaya infrastruktura sibirskogo kol'tsevogo istichnika fotonov SKIF, 1, 8 (2022) (in Russian)
  3. N.I. Chkhalo, N.N. Salashchenko. J. Surf. Investig., 17, 307 (2023). DOI: 10.1134/S1027451022060349
  4. A. Thiel, M. Ebbeni, H. Tarawneh. Veritas, 48, 6 (2018). DOI: 10.18429/JACoW-MEDSI2018-TUOPMA04
  5. A.B. Temnykh. Phys. Rev. ST Accel. Beams, 11 (12), 120702 (2008). DOI: 10.1103/PhysRevSTAB.11.120702
  6. R. Carr. Nucl. Instr. Meth., 306 (1-2), 391 (1991). DOI: 10.1016/0168-9002(91)90346-R
  7. A.B. Temnykh. Nucl. Instr. Meth., 587 (1), 13 (2008). DOI: 10.1016/j.nima.2008.01.002
  8. M.M. Barysheva, A.E. Pestov, N.N. Salashchenko, M.N. Toropov, N.I. Chkhalo. Phys. Usp., 55 (7), 681 (2012). DOI: 10.3367/UFNe.0182.201207c.0727
  9. OPERA. Elektromagnitnaya i elektromekhanicheskaya simulyaciya. URL: https://www.3ds.com/ru/produkty-i-uslugi/simulia/produkty/opera / (date of access: 02.03.2024)
  10. T. Meinander. CAS CERN Accelerator School: 5th General Accelerator Physics Course Proc. (CERN, Geneva, 1994), v. 2, p. 983
  11. T. Tanaka, H. Kitamura. J. Synchrotron Rad., 8 (6), 1221 (2001). DOI: 10.1107/S090904950101425X
  12. A.V. Akimov, Yu.S. Aktershev, V.V. Anashin, A.V. Andiyanov, O.V. Anchugov, M.V. Arcentyeva, P.A. Bak, G.N. Baranov, A.M. Barnyakov, A.M. Batrakov, O.V. Belikov, L.L. Belova, E.A. Bekhtenev,V.I. Bukhtiyarov, A.V. Bogomyakov, V.M. Borin, D.B. Burenkov, D.S. Vinnik, V.N. Volkov, E.S. Vonda, K.M. Gorchakov, K.A. Grishina, D.S. Gurov, G.A. Gusev, B.A. Dovzhenko, E.N. Dementyev, A.I. Erokhin, A.A. Zharikov, K.V. Zhilyaev, A.A. Zhukov, A.N. Zhuravlev, K.V. Zolotarev, N.A.Zolotukhina, Ya.V. Zubavichus, S.E. Karnaev, G.V. Karpov, K.Yu. Karyukina, V.D. Kashkin, V.A. Kiselev, V.V. Kobets, E.S. Kotov, V.Ya Korchagin, A.A. Krasnov, V.S. Krapivin, S.A. Krutikhin, V.S. Kuzminykh, G.N. Kulipanov, I.V. Kuptsov, G.Ya Kurkin, A.E. Levichev, E.B. Levishev, D.V. Leshonok, (Dorokhova), P.V. Logachev, Yu.I. Maltseva, Ma Syao Chao, N.A. Mezentsev, O.I. Meshkov, N.V. Mityanina, I.A. Morozov, A.A.Morsin, S.A. Nikitin, D.A. Nikiforov, B.K. Ovchar, I.N. okunev, A.V. Pavlenko, O.A. Pavlov, A.Yu Pakhomov, V.M. Petrov, S.L. Pivovarov, P.A. Piminov, A.V. Polyansky, D.N. Pureskin, D.F. Reshetov, V.V. Repkov, E.A. Rotov, T.V. Rybitskaya, S.L. Samoilov, I.K. Sedlyarov, A.M. Semenov, D.V. Sen'kov, L.E. Serdakov, Sh.R. Signatulin, S.V. Sinyatkin, M.A. Skamarokha, A.A. Starostenko, A.G. Tribendis, A.V. Utkin, M.G. Fedotov, A.S. tsyganov, A.D. Shiyankov, D.A. Shvedov, V.A. Shkaruba,K.S. Shtro, N.S. Shchegolkov. Tekhnologicheskaya infrastruktura sibirskogo kol'tsevogo istichnika fotonov "SKIF", 2, 98 (2022) (in Russian)
  13. G. Geloni, E. Saldin, E. Schneidmiller, M. Yurkov. Nucl. Instr. Meth., 588 (3), 463 (2008). DOI: 10.1016/j.nima.2008.01.089
  14. T. Tanaka. Opt. Lett., 42 (8), 1576 (2017). DOI: 10.1364/OL.42.001576
  15. I. Agapov, G. Geloni, S. Tomin, I. Zagorodnov. Nucl. Instr. Meth., 768, 151 (2014). DOI: 10.1016/j.nima.2014.09.057
  16. F. Gori, M. Santarsiero, S. Vicalvi, R. Borghi, G. Guattari. Pure Appl. Opt., 7 (5), 941 (1998). DOI: 10.1088/0963-9659/7/5/004

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru