Analysis and comparison of characteristics of the uncooled millimeter-wave diode detectors within a generalized theoretical model
Korolyov S. A.
11Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: pesh@ipm.sci-nnov.ru
Within the framework of a generalized theoretical model of the uncooled millimeter-wave diode detectors, an analysis and comparison of their achievable characteristics was carried out. The approach is based on the tunnel model of current transfer. A one-dimensional structure that consists of a semiconductor/dielectric barrier layer between two electrodes is considered. The scattering of charge carriers in the barrier layer is assumed to be insignificant. Direct detection of a weak millimeter-wave signal is theoretically studied. Expressions for the current, the conductance, the curvature coefficient of the diode are derived. Possible families of the considered class of detectors are determined, their achievable characteristics are analyzed. It is shown that all detectors of the considered class can be divided into two families with qualitatively different behavior of the curvature coefficient in dependance on the diode conductance. It is obtained that the current sensitivity of the diodes that belong to the first family cannot exceed 20 A/W, while diodes of the second family can achieve ~ 500 A/W. However, this value is significantly lower at a zero-bias condition, when only ~ 30 A/W can be practically obtained for the second family diodes. The results of this work can be useful at choosing the diode type for a specific practical problem. Keywords: millimeter waves, direct detection, uncooled diode detector, semiconductor structure, tunnel current transport model.
- L. Yujiri, M. Shoucri, P. Moffa. IEEE Microw. Mag., 4, 39 (2003). DOI: 10.1109/mmw.2003.1237476
- V.I. Shashkin, P.V. Volkov, A.V. Goryunov, I.A. Illarionov, Yu.I. Belov, A.G. Serkin. COMCAS 2013 (Tel-Aviv, Israel, 2013), p. 6685247. DOI: 10.1109/COMCAS.2013.6685247
- V.L. Vaks, V.A. Anfertev, V.Y. Balakirev, S.A. Basov, E.G. Domracheva, A.V. Illyuk, P.V. Kupriyanov, S.I. Pripolzin, M.B. Chernyaeva. Phys. Uspekhi, 63 (7), 708 (2020). DOI: 10.3367/UFNe.2019.07.038613
- Yu.A. Dryagin, V.V. Parshin. Int. J. of IR\&MMW, 3 (7), 1023 (1992). DOI: 10.1007/BF01009626
- B. Kapilevich, V. Shashkin, B. Litvak, G. Yemini, A. Etinger, D. Hardon, Yo. Pinhasi. IEEE Microw. Wirel. Compon. Lett., 26 (8), 637 (2016). DOI: 10.1109/LMWC.2016.2585557
- B.A. Rozanov, S.B. Rozanov. Priemniki millimetrovykh voln (Radio i svyaz, M., 1989)
- E.H. Rhoderick, R.H. Williams. Metal-Semiconductor Contacts, 2nd ed. (Clarendon Press, Oxford, 1988)
- Z. Zhang, R. Rajavel, P. Deelman, P. Fay. IEEE Microw. Wirel. Compon. Lett., 21 (5), 267 (2011). DOI: 10.1109/LMWC.2011.2123878
- P. Chahal, F. Morris, G. Frazier. IEEE Electr. Device L., 26 (12), 894 (2005). DOI: 10.1109/LED.2005.859622
- N.V. Vostokov, M.V. Revin, V.I. Shashkin, J. Appl. Phys., 127, 044503 (2020). DOI: 10.1063/1.5131737
- R. Al Hadi, H. Sherry, J. Grzyb, Y. Zhao, W. Forster, H. Keller, A. Cathelin, A. Kaiser, U. Pfeiffer. IEEE J. Solid-State Circuits, 47 (12), 2999 (2012). DOI: 10.1117/12.919218
- F. Sizov. Semicond. Sci. Technol., 33 (12), 123001 (2018). DOI: 10.1088/1361-6641/aae473
- G. Valv usis, A. Lisauskas, H. Yuan, W. Knap, H.G. Roskos. Sensors, 21 (12), 4092 (2021). DOI: 10.3390/s21124092
- N. Ashcroft, N.D. Mermin. Solid State Physics (Saunders College Publishing, Philadelphia, 1976)
- R.P. Feynman. Statistical Mechanics (W.A. Benjamin, Advanced Book Program, Massachusetts, 1972)
- A.M. Cowley, H.O. Sorensen. IEEE Trans. Microw. Theory Tech., MTT-14 (12), 588 (1966). DOI: 10.1109/GMTT.1966.1122517
- S.M. Sze. Physics of Semiconductor Devices (John Wiley \& Sons, Inc., Hoboken, 2007)
- W.F. Gabriel. IEEE Trans. Microw. Theory Tech., MTT-15 (10), 538 (1967). DOI: 10.1109/TMTT.1967.1126533
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.