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Within the framework of a generalized theoretical model of the uncooled millimeter-wave diode detectors, an

analysis and comparison of their achievable characteristics was carried out. The approach is based on the tunnel

model of current transfer. A one-dimensional structure that consists of a semiconductor/dielectric barrier layer

between two electrodes is considered. The scattering of charge carriers in the barrier layer is assumed to be

insignificant. Direct detection of a weak millimeter-wave signal is theoretically studied. Expressions for the current,

the conductance, the curvature coefficient of the diode are derived. Possible families of the considered class

of detectors are determined, their achievable characteristics are analyzed. It is shown that all detectors of the

considered class can be divided into two families with qualitatively different behavior of the curvature coefficient

in dependance on the diode conductance. It is obtained that the current sensitivity of the diodes that belong to

the first family cannot exceed 20A/W, while diodes of the second family can achieve ∼ 500A/W. However, this

value is significantly lower at a zero-bias condition, when only ∼ 30A/W can be practically obtained for the second

family diodes. The results of this work can be useful at choosing the diode type for a specific practical problem.

Keywords: millimeter waves, direct detection, uncooled diode detector, semiconductor structure, tunnel current

transport model.
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Introduction

Uncooled millimeter-wave detectors are widely used to

solve certain scientific and practical tasks, such as radio

imaging [1,2], spectroscopy [3], diagnostics of materials [4],
wireless power transmission [5] etc.

Generally the detector is one or several non-linear

elements included in a transmission line [6]. A transmission

line could be a metal waveguide, a coplanar line, an antenna.

A non-linear element converts a high-frequency signal into

a low-frequency signal.

When describing the detecting properties of non-linear el-

ements, it is convenient to separately consider the elements

with a different number of electrodes: two (diodes), three
etc. Among the millimeter-wave detector diodes the most

universal and common is a Schottky barrier diode [7]. Other
types of diodes are being actively developed and used: a

inversed diode [8], a resonant-tunneling [9], a heterobarrier

one [10] etc. The last two−three decades were marked by

success in design of a millimeter wave detector based on a

field transistor [11], which is an example of a three-electrode

non-linear element.

Diversity of detector diodes generates need for their

classification in order to compare the achievable charac-

teristics and to analyze the possibility of use for solving

specific practical tasks. Currently available papers of review

nature [12,13] focus on listing the available types of diodes

and their realizations without analysis of an inner link

between the mechanisms of electronic transport of the

considered class of devices. This makes you think about

chances of existence of other types of detector diodes

and, therefore, find the data given in the review papers

incomplete.

The objective of this paper is to develop an approach to

classification and analysis of the achievable characteristics

of potential families of uncooled diode millimeter-wave

detectors based on using a single theoretical model.

1. Theoretical model

A one-dimensional structure is considered, which may

include both dielectric/semiconductor and metal layers. The

first and the last layers serve as electrodes, i. e. are well-

conducting layers made of either a heavily-doped semicon-

ductor or from metal. The conductance of electrodes is

such that their voltage drop may be neglected compared to

voltage drop in the intermediate layers that may jointly be

called a barrier layer. It is assumed that the structure is

crystalline. However, the work results will not change, if

the dielectric and metal layers are amorphous.

An expression for current density in a one-dimensional

crystalline structure has the following general appear-

ance [14]:

j = −e
N(z )
∑

n=1

∫

Vk(z )

dk
4π3

v(n, k, z )g(n, k, z ), (1)
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where v(n, k, z ) — electron velocity; g(n, k, z ) — distri-

bution function determined in such a manner that value
dz dk
4π3 g(n, k, z ) is equal to the number of electrons per unit

of surface area in n-th permiited energy zone in the element

of the phase space volume dz dk with a center in point z ,
k; e — elementary charge; k — wave vector; z — spatial

coordinate. Summation is carried out in all permitted energy

zones from 1 to N(z ). The integral is taken for all values of

the wave vector in the first Brillouin zone Vk(z ).
Let the boundary between the first electrode and the

barrier layer have the coordinate z = 0, and the boundary

between the second electrode and the barrier layer —
coordinate z = d, where d — barrier layer thickness.

Values of current density in electrodes in an arbitrary small

proximity to the specified boundaries in accordance with

equation (1) are given by the following expressions:

j = −e
∫

Vk,1

dk
4π3

v1(k)g1(k), (2a)

j = −e
∫

Vk,2

dk
4π3

v2(k)g2(k), (2b)

where lower indices 1 and 2 number the electrodes.

Charge transfer in the electrodes is determined by a single

energy zone, therefore expressions (2a) and (2b) exclude

summation by n.
Let us imagine the integral for three-dimensional area

Vk,1(2) in the form of an integral of two-dimensional

area Sk⊥,1(2) and an integral of one-dimensional area

Lkz ,1(2)(k⊥), where k⊥ — wave vector projection on

a plane perpendicular to axis z , kz — wave vector

projection on a direction along the axis z . Since

v1(2)(k⊥, kz ) = −v1(2)(k⊥,−kz ) [14], we get the expres-

sion

j = − e
4π3

∫

Sk
⊥

,1(2)

dk⊥

∫

L+
kz ,1(2)

(k⊥)

dkzv1(2)(k⊥, kz )

× [g1(2)(k⊥, kz ) − ḡ1(2)(k⊥, kz )], (3)

where ḡ1(2)(k⊥, kz ) = g1(2)(k⊥,−kz ), L+
kz ,1(2)

(k⊥) — sub-

set of Lkz ,1(2)(k⊥), which meets the condition kz > 0.

By definition the electron velocity

v(k⊥, kz ) = dE(k⊥, kz )/d(~kz ) [14], where E(k⊥, kz ) —
electron energy, ~ — reduced Planck’s constant. After

the velocity expression is included in equation (3) and

integration by kz changes to integration by E we get the

following expression for current density:

j = − e
4π3~

∫

Sk
⊥

,1(2)

dk⊥

∫

LE,1(2)(k⊥)

dE[g1(2)(k⊥, E)

− ḡ1(2)(k⊥, E)]. (4)

When expression (4) was derived, it was assumed that

energy E was a one-to-one function kz , i. e. charge transfer

in electrodes depended on electrons located in the same

valley. In case when in process of charge transfer in

electrodes several equivalent valleys participate, the current

value should be multiplied by the corresponding number of

valleys.

Let us further assume that electrons falling on the barrier

layer are in thermodynamic equilibrium state, i. e.

g1(k⊥, E) = f 1(E), (5a)

ḡ2(k⊥, E) = f 2(E), (5b)

where f 1(2)(E) — Fermi−Dirac distribution function.

To find the distribution function of electrons exiting the

barrier layer, let us assume that in the barrier layer the

scattering is insignificant or totally absent. I.e. the condition

of preserving the projection of electron wave vector k⊥
and its energy E when the electron passes through the

barrier layer is met. Then the following expressions may

be obtained:

ḡ1(k⊥, E) = (1− P1(k⊥, E)) f 1(E) + P1(k⊥, E) f 2(E),
(6a)

g2(k⊥, E) = (1− P2(k⊥, E)) f 2(E) + P2(k⊥, E) f 1(E),
(6b)

where P1(2)(k⊥, E) — probability of electron passage with

initial parameters (k⊥, E) from an electrode 1(2) to an

electrode 2(1). After substitution of expressions (5a), (5b)
and (6a), (6b) in (4) we find

j = − e
4π3~

∫

Sk
⊥

,1(2)

dk⊥

∫

LE,1(2)(k⊥)

dE[ f 1(E)

− f 2(E)]P1(2)(k⊥, E). (7)

The conditions imposed upon the properties of the

distribution function in electrodes (5a), (5b) and (6a), (6b),
and the condition of absent scattering in the barrier layer

practically reduce the considered current transfer model to a

tunnel model [15] with an additional simplifying assumption

on preservation of the wave vector projection k⊥ as the

electron passes through the barrier layer.

Since k⊥ and E are maintained when the elec-

tron passes via the barrier layer, outside of the set

Sk⊥ = Sk⊥,1 ∩ Sk⊥,2 or LE(k⊥) = LE,1(k⊥) ∩ LE,2(k⊥) the

equation P1(2)(k⊥, E) = 0 should be identically satisfied.

Taking into account the specified conditions, one may

rewrite (7) in the form convenient for further analysis

j =
e

4π3~

∫

Sk
⊥

dk⊥
{

∫

LE,2(k⊥)

dE f 2(E)P2(k⊥, E)

−
∫

LE,1(k⊥)

dE f 1(E)P1(k⊥, E)
}

. (8)

Starting from expression (8), let us count the electron

energy in the electrode from Fermi level in this electrode;

in this case f 1(E) = f 2(E) ≡ f (E).
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To calculate the differential conductance of structure

G = d j/dV it is necessary to find out the shape of current

dependence on voltage j(V ). Let us note that the fields of

integration, as well as the distribution function in (8) do not

depend on the applied voltage. The dependent value is only

the probability of electron passage through the barrier layer

P1(2)(k⊥, E,V ). Let us imagine this function in the form of

a single rectangular pulse

P i(k⊥, E,V ) = θ(E − Ei,s (k⊥,V )) − θ(E − Ei, f (k⊥,V )),
(9)

where θ(E − Ei,s( f )(k⊥,V )) — Heaviside function,

Ei,s( f )(k⊥,V ) — upper and lower boundaries of the

energy authorized for transition through the barrier layer,

i = {1, 2}. Let us assume that the position of the

boundaries linearly depends on the applied voltage:

Ei,s( f )(k⊥,V ) = Ei,s( f ),0(k⊥) + αi,s( f )(k⊥)eV, (10)

where

Ei,s( f ),0(k⊥) = Ei,s( f )(k⊥, 0),

αi,s( f )(k⊥) = dEi,s( f )(k⊥,V )/d(eV ),

where

α1,s( f )(k⊥) ≥ 0, α2,s( f )(k⊥) ≤ 0,

|α1,s( f )(k⊥)| + |α2,s( f )(k⊥)| = 1.

Differentiating (8) by voltage with account of (9)
and (10) and integrating by energy, we find

G =
e

4π3~

∫

Sk
⊥

dk⊥

2
∑

i=1

{

|αi,s (k⊥)| f
(

Ei,s(k⊥)
)

− |αi, f (k⊥)| f
(

Ei, f (k⊥)
)}

. (11)

In expression (11) it is assumed that for those k⊥, where

Ei,s( f )(k⊥) /∈ LE,i(k⊥), the parameter αi,s( f )(k⊥) = 0.

Similarly we find the parameter of quadratic nonlinearity

β = (d2 j/dV 2)/(d j/dV ):

β = e

∫

Sk
⊥

dk⊥
∑2

i=1(−1)i{|αi,s (k⊥)|2 f ′(Ei,s (k⊥))−

−|αi, f (k⊥)|2 f ′(Ei, f (k⊥))}
∫

Sk
⊥

dk⊥
2

∑

i=1

{|αi,s (k⊥)| f (Ei,s (k⊥))−

−|αi, f (k⊥)| f (Ei, f (k⊥))}

.

(12)
In (12) designation f ′(E) = − d

dE f (E) is introduced.

Let us stop on coefficients αi,s( f )(k⊥), which appear in

expressions (11) and (12) when using the approximation

of the linear dependence of the boundaries in the

area authorized for electron transition on the applied

voltage (10). In some special cases it is really so, for

example, when the energy boundary is a boundary of

the energy zone of the electrode. In cases of non-linear

dependence, the introduced linear approximation (10) is

based on the condition of a weak input signal, specific for

the mode of diode detection (see below).

2. Classification of detectors
and analysis of their characteristics

Under the conditions of a weak input signal VRF , when

the ratio VRF ≪ 1/β is met, the main parameters charac-

terizing the sensitivity of the detector, are the differential

conductance G and parameter of square-law nonlinearity β .

This mode of instrument operation is called the square-law

detection. When the threshold level of signal VRF,USL ∼ 1/β

is exceeded, the sensitivity of the square-law detector starts

decreasing, which is related to additional absorption of

power of the received signal in the nonlinearity of the

current-voltage curve of third degree [16].
Analysis of expressions (11) and (12) shows that all de-

tectors may be separated into two families with qualitatively

different properties. The first detector family meets the

following condition:

∫

Sk
⊥

dk⊥

2
∑

i=1

|αi,s (k⊥)| f
(

Ei,s (k⊥)
)

≫
∫

Sk
⊥

dk⊥

2
∑

i=1

|αi, f (k⊥)| f
(

Ei, f (k⊥)
)

, (13a)

or
∫

Sk
⊥

dk⊥

2
∑

i=1

|αi, f (k⊥)|
(

1− f
(

Ei, f (k⊥)
))

≫
∫

Sk
⊥

dk⊥

2
∑

i=1

|αi,s (k⊥)|
(

1− f
(

Ei,s (k⊥)
))

. (13b)

The consequence of the conditions imposed is the fact that

the conductance of the barrier layer is determined only

by lower (expression (13a)) or upper (expression (13b))
boundaries authorized for transition of electron energy

intervals through the barrier layer. Condition (13a) is

related to electron conductance; condition (13b) — to hole

conductance of the structure. Further for more certainty we

will consider the case of electron conductance.

If the condition (13a) is met, the maximum (pos-
itive) value of the square-law nonlinearity parame-

ter β is achieved at α1,s (k⊥) = 0 (|α2,s (k⊥)| = 1) and

α2, f (k⊥) = 0 (|α1, f (k⊥)| = 1). At opposite values

α1(2),s( f )(k⊥) the same value is achieved by absolute

value, but with the opposite sign β . Let us con-

sider the case of the positive value of parameter β .

Let us also take into account the fact that in practi-

cally implemented structures meeting the condition (13a),
∫

Sk
⊥

dk⊥ f ′
(

E1, f (k⊥)
)

≪
∫

Sk
⊥

dk⊥ f ′
(

E2,s(k⊥)
)

. As a result,

for the first family of detectors we get the following

expressions:

G =
e

4π3~

∫

Sk
⊥

dk⊥ f
(

E2,s(k⊥)
)

, (14a)
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β = e

∫

Sk
⊥

dk⊥ f ′
(

E2,s (k⊥)
)

∫

Sk
⊥

dk⊥ f
(

E2,s(k⊥)
) . (14b)

The highest value is reached by β provided that

E2,s (k⊥) ≫ kBT, (15)

where T — structure temperature, kB — Boltzmann

constant. In this case

G ≪ e2m∗

⊥
kBT

2π2~3
, (16a)

β =
e

kBT
, (16b)

where m∗

⊥
— effective mass of electron in barrier layer.

The second family of the detectors is characterized by the

condition opposite to (13a) and (13b), namely

∫

Sk
⊥

dk⊥

2
∑

i=1

|αi,s (k⊥)| f
(

Ei,s (k⊥)
)

∼
∫

Sk
⊥

dk⊥

2
∑

i=1

|αi, f (k⊥)| f
(

Ei, f (k⊥)
)

. (17)

Therefore, conductance G may go to zero and take on

negative values. Since the negative differential conductance

is an unstable state of an electronic instrument, it may not

be used for signal detection. Therefore, only the areas of

parameters with G > 0 will be considered.

For the second family of detectors the maximum (posi-
tive) value of the square-law nonlinearity parameter is also

achieved at α1,s (k⊥)=0 (|α2,s (k⊥)|=1) and α2, f (k⊥)=0

(|α1, f (k⊥)|=1). Expressions (11) and (12) will be recorded

then as follows:

G =
e

4π3~

∫

Sk
⊥

dk⊥
{

f
(

E2,s(k⊥)
)

− f
(

E1, f (k⊥)
)}

, (18a)

β = e

∫

Sk
⊥

dk⊥
{

f ′
(

E2,s(k⊥)
)

+ f ′
(

E1, f (k⊥)
)}

∫

Sk
⊥

dk⊥
{

f
(

E2,s(k⊥)
)

− f
(

E1, f (k⊥)
)} . (18b)

The numerator in the expression for β reaches the highest

value under the following conditions:

mink⊥E2(1),s( f )(k⊥) < 0, |mink⊥E2(1),s( f )(k⊥)| ≫ kBT,
(19a)

maxk⊥E2(1),s( f )(k⊥) > 0, |maxk⊥E2(1),s( f )(k⊥)| ≫ kBT.
(19b)

In this case,

G =
e2

2π2~3
{m∗

⊥,1|mink⊥E2,s (k⊥)|−m∗

⊥,2|mink⊥E1, f (k⊥)|},
(20a)

β =
e3(m∗

⊥,1 + m∗

⊥,2)

2π2~3G
≡ H

G
, (20b)

where H = e3(m∗

⊥,1 + m∗

⊥,2)/(2π
2
~
3), m∗

⊥,1(2) — effective

mass of charge carriers in the plane perpendicular to

axis z in the first (second) electrode. Note that conduc-

tance G may regardless of H change its value within the

wide limits due to the change of |mink⊥ E2,s (k⊥)| and

|mink⊥ E1, f (k⊥)|.
Using the found expressions for G and β let us analyze

the current sensitivity of the first and second detector

families. Current sensitivity SI for a square-law detector

may be recorded as follows [16]:

SI =
β

2

1

1 + r s G + (2π f c)2r s/G
, (21)

where c — capacity of the barrier layer per unit of surface

area, r s — subsequent resistance to the barrier layer per

unit of surface area, f — frequency of detected signal.

For the first detector family, if the condition (16a) is met,

the parameter of square-law nonlinearity β does not depend

on conductance G. In this case current sensitivity (21)
reaches its maximum at

(2π f c)2r s ≪ G ≪ min

{

e2m∗

⊥
kBT

2π2~3
,
1

r s

}

, (22a)

where

SI =
e

2kBT
. (22b)

Let us assess the conductance values compliant with the

condition of (22a). Let m∗

⊥
∼ 0.1m0 [17], where m0 — mass

of free electron, c ∼ 1 fF/µm2, r s ∼ 100� · µm2 [7,10],
f ∼ 100GHz. Value of the specific capacity of the

diode was obtained based on the equation for the flat

capacitor capacity c = ε0ε/d, where d ∼ 100 nm [7,10],
and ε ∼ 10 [17] — dielectric permeability of barrier

layer; ε0 — electric constant. Using the taken values,

we obtain 4 · 10−5 1/(� · µm2) ≪ G ≪ 10−2 1/(� · µm2),
which means that the conductance takes on values

G ∼ 10−4−10−31/(� · µm2)). Besides, current sensi-

tivity at room temperature (T = 293K) is equal to

SI = 19.8A/W.

For the second detector family the current sensitivity

reaches its maximum at

G ≪ 2π f c ·min{1, 2π f r s c}, (23a)

then

SI =
e3(m∗

⊥,1 + m∗

⊥,2)

(2π)4~3( f c)2r s
. (23b)

To assess the conductance value that meets

the condition (23a), let us take c ∼ 30 fF/µm2,

r s ∼ 100� · µm2 [8,9,18], f ∼ 100GHz. Note that

the selected capacity value is 30 times higher than the

corresponding value for the instruments of the first family,

which is explained by different in the barrier layer thickness:

compliance with the condition (17) is implementable only

Technical Physics, 2024, Vol. 69, No. 6
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for tunnel mechanism of current flow, possible at barrier

level thickness of d ∼ 1−10 nm [8,9,18]. After substitution
of numerical values into expression (23a) we obtain

G ≪ 2 · 10−2 1/(� · µm2), from which it follows that

G . 10−3 1/(� · µm2). Value of the current sensitivity

of the second family detectors at the above values of

parameters and m∗

⊥,1(2) ∼ 0.1m0 [17] may be assessed as

SI ∼ 500A/W, which is approximately 20−30 times higher

than the achievable value of current sensitivity for the first

family detectors. More detailed analysis, however, may find

that the obtained high value of current sensitivity for detec-

tors from the second family may be achieved only in the

mode of diode operation with bias, when the compliance

with the conditions (19) is physically implementable.

Let us define the maximum achievable value of

current sensitivity of detectors related to the sec-

ond family in the mode of operation without bias.

First, note that for diodes operating in this mode,

maxk⊥ E2,s (k⊥) = mink⊥ E1, f (k⊥) ≡ E0. Second, you can

show that the parameter of square-law nonlinearity β

is a monotonously decreasing function of parameter

1E = maxk⊥ E1, f (k⊥) −mink⊥ E2,s(k⊥), and at 1E → 0

the parameter is β → ∞. For this reason we focus our

attention on the case

1E . kBT. (24)

If this condition is met from expressions (18a), (18b) we

find

G =
e2m∗

⊥
1E2

(4π)2~3kBT
, (25a)

β =
4e
1E

= e

√

e2m∗

⊥

π2~3kBTG
≡ I√

G
, (25b)

where

I = e
√

e2m∗

⊥
/(π2~3kBT ),

m∗

⊥
= m∗

⊥,1m∗

⊥,2/(m
∗

⊥,1 + m∗

⊥,2).

Current sensitivity (21) at the same time reaches its

maximum, when

G =

√

1 + 12(2π f r s c)2 − 1

6r s
.

e2m∗

⊥
kBT

(4π)2~3
, (26a)

in this case,

SI =
e

4(1 + 2r s G)

√

e2m∗

⊥

π2~3kBT G
. (26b)

Substituting to (26a)

c ∼ 30 fF/µm2, r s ∼ 100� · µm2 [8, 9, 18],

f ∼ 100GHz, m∗

⊥,1(2) ∼ 0.1m0 [17],

let us find G ∼ 0.9 · 10−2 1/(� · µm2). Using this conduc-

tance value, from (26b) we obtain SI ∼ 30A/W. Therefore,

in the mode of operation without bias the maximum

achievable value of current sensitivity for the detectors

related to the second family is compared by the order of

value to the value obtained for the detectors of the first

family (see estimates of expressions (22a), (22b)).
Note that at the stage of obtaining the final expressions

for conductance, parameter of square-law nonlinearity and

current sensitivity, used for quantitative estimates, the ap-

proximation is introduced for the constancy (independence
on the electron energy) of two-dimensional (in the plane

perpendicular to the direction of current flow) density of

states. In case of the parabolic law of dispersion it is

precisely complied with. When deviating from the parabolic

law of dispersion, one may identify a section of electron

energies, which provide the main contribution to current

transfer, and introduce a certain average density of states

value in this section, which will impact the values of the

effective masses of charge carriers m∗

⊥,1(2) and m∗

⊥
.

The important parameter of the diode is its impedance Z,
which defines the possibility of the effective matching of the

element with the transmission line. Using the equivalent

scheme of the diode made of parallel-connected resistance

and capacity of the barrier layer with a serial resistance

thereto, one may find that [16]:

Z =
1

G + i2π f c
+ r s . (27)

Expression (27) makes it possible to assess the

value of diode impedance for the considered families

of detectors using the above values for c, r s , f and

the calculated value G. For detectors related to the

first family, Z ∼ [3− i16] · 102−[8− i4] · 102 � · µm2.

For detectors related to the second family,

Z ∼ [1− i0.5] · 102 � · µm2 in the mode of operation

with bias and Z ∼ [1.2− i0.4] · 102 � · µm2 in the mode of

operation without bias. For effective agreement of the diode

with the transmission line in the wide band of frequencies

it is necessary that Re(Z) & |Im(Z)|, which under certain

values of parameters may be achieved for all considered

types of detectors.

To estimate the limit power of the input signal PRF,USL

(per unit of the diode structure surface area), when the

conditions for implementation of the square-law detection

mode are not complied with, let us use the equation

PRF,USL ≈ G

8[1 + r s G + (2π f c)2r s /G]S2
I

, (28)

which may be derived from the ratio between the

power and the voltage of the input signal, and from

the condition VRF,USL ∼ 1/β . Substituting to (28) the

above specific values for every family of detectors c ,
r s , f and the calculated values G and SI , we find

that PRF,USL ∼ 3 · 10−8 − 3 · 10−7 W/µm2 for detectors of

the first family, PRF,USL . 10−11W/µm2 for detectors of

the second family in the mode of operation with bias

and PRF,USL ∼ 2 · 10−7 W/µm2 in the mode of operation
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Estimated values of characteristics of uncooled millimeter-wave detectors, examples of specific types of diodes

Family
Mode G, SI , Z,� · µm2 PRF,USL,W/µm2 Examples

of operation 1/(� · µm2) A/W

1

Without bias

∼ 10−4
−10−3

∼ 20

∼ [300

∼ 3 · 10−8
−3 · 10−7

Schottky barrier diode [7],

With bias

−i1600]−[800 heterobarrier diode [10]
−i400]

2
Without bias ∼ 9 · 10−3

∼ 30 ∼ [120− i40] ∼ 2 · 10−7

Backward diode [8],
resonant-tunneling

diode [9]

With bias . 10−3
∼ 500 ∼ [100− i50] . 10−11 Tunnel diode [18]

without bias. Note that PRF,USL ∝ 1/S2
I , therefore PRF,USL

may be increased by decrease of SI .

The table for both families and both modes of detector

operation contains estimated value of the above analyzed

parameters, and also the examples of the specific types

of detector diodes with the corresponding references to a

literature source.

Conclusion

In the paper within a single theoretical model the

analysis was conducted, and quantitative estimates were

obtained for the main characteristics of the uncooled

diode millimeter-wave detectors. Analysis of expressions

for conductance and parameter of square-law nonlinearity

shows that all considered diodes may be divided into

two families, which qualitatively differ by their detecting

properties. The parameter of the square-law nonlinearity

of the first family detectors is limited by value 40A/W,

while for the second family detectors this value may reach

the infinity. This feature is eliminated by taking into

account the spurious parameters of the diode, such as

capacity and serial resistance. Nevertheless, the maximum

current sensitivity of the second family detectors remains

20−30 times higher than in the first family detectors.

With zero bias the maximum current sensitivity of both

families of detectors is comparable and amounts to around

20−30A/W. It is possible to specify as examples that

the Schottky barrier diode and heterobarrier-based diode

belong to the first family; the backward diode, resonant-

tunneling diode and tunnel diode belong to the second

family.

The proposed classification and the obtained estimate

values of detector parameters in the considered class may

be useful to select the optimal type of diode and preliminary

forecasting of the achievable characteristics of the end

devices, when the specific practical task is considered.
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