Microwave synthesis method for obtaining temperature-activated carbon materials
Dyachkova I. G.1, Zolotov D. A.1, Kumskov A. S.1, Volchkov. I. S.1, Matveev E. V.2, Asadchikov. V. E.1
1National Research Center “Kurchatov Institute”, Moscow, Russia
2Research Institute of Advanced Materials and Technologies Moscow, Russian
Email: sig74@mail.ru, zolotovden1985@gmail.com, a.kumskov@gmail.com, volch2862@gmail.com, maegor@gmail.com, asad@crys.ras.ru

PDF
In this work, the microwave synthesis of activated carbon material from cotton lint samples was developed and improved, with the priority task of determining the conditions and performance of "full activation" during microwave carbonization. Using such methods as optical and electron microscopy, X-ray microtomography, X-ray fluorescence analysis, X-ray phase analysis and evaluation on methylene blue adsorption, morphology, elemental and phase compositions, as well as adsorption capacity of carbonized cotton lint samples at different microwave exposure modes were investigated. It is experimentally shown that microwave activation can be carried out in a single step. It is assumed that a deeper degree of purification or the use of purer raw materials will allow to achieve higher adsorption capacity values. Keywords: cotton lint, microwave, carbonization, activation.
  1. J. Lin, S. Zhao, S. Cheng. Environ Sci. Pollut. Res., 29, 48839 (2022). DOI: 10.1007/s11356-022-19334-4
  2. Y.F. Huang, P.T. Chiueh, S.L. Lo. Sustain. Environ. Res., 26, 103 (2016). DOI: 10.1016/j.serj.2016.04.012
  3. N. Sasi Kumar, D. Grekov, P. Pre, B.J. Alappat. Renewable and Sustainable Energy Reviews, 124, 109743 (2020). DOI: 10.1016/j.rser.2020.109743
  4. Y. Zhang, S. Fan, T. Liu, W. Fu, B. Li. Sustainable Energy Technol. Assessments, 50, 101873 (2022). DOI: 10.1016/j.seta.2021.101873
  5. F. Motasemi, M.T. Afzal. Renewable and Sustainable Energy Reviews, 28, 317 (2013). DOI: 10.1016/j.rser.2013.08.008
  6. S. Sathish, R. Nirmala, H.Y. Kim, R. Navamathavan. Carbon Lett., 32, 1151 (2022). DOI: 10.1007/s42823-022-00348-4
  7. K. Chen, Z.J. He, Z.H. Liu, A.J. Ragauskas, B.Z. Li, Y.J. Yuan. Chem. Sus. Chem., 15 (21), e202201284 (2022). DOI: 10.1002/cssc.202201284
  8. D.S. Priya, L.J. Kennedy, G.T. Anand. Mater. Today Sustainability, 100320 (2023). DOI: 10.1016/j.mtsust.2023.100320
  9. Electronic source. Available at: https://www.grandviewresearch.com/industry-analysis/ activated-carbon-market
  10. J.A. Menendez, A. Arenillas, B. Fidalgo, Y. Fernandez, L. Zubizarreta, E.G. Calvo, J.M. Bermudez. Fuel Process. Technol., 91, 1 (2010). DOI: 10.1016/j.fuproc.2009.08.021
  11. M.A.A. Zaini, M.J. Kamaruddin. J. Anal. Appl. Pyrolysis, 101, 238 (2013). DOI: 10.1016/j.jaap.2013.02.003
  12. T. Kim, J. Lee, K.H. Lee. Carbon Lett., 15, 15 (2014). DOI: 10.5714/CL.2014.15.1.015
  13. S.M. Villota, H. Lei, E. Villota, M. Qian, J. Lavarias, V. Taylan, I. Agulto, W. Mateo, M. Valentin, M. Denson. ACS Omega, 4, 7088 (2019). DOI: 10.1021/acsomega.8b03514
  14. V.E. Asadchikov, I.G. Dyachkova, D.A. Zolotov, A.S. Kumskov, A.L. Vasilyev, V.V. Berestov. Crystallogr. Rep., 67 (4), 556 (2022). DOI: 10.1134/s1063774522040046
  15. I.G. Dyachkova, D.A. Zolotov, A.S. Kumskov, I.S. Volchkov, V.V. Berestov, E.V. Matveev. Phys. Usp., 66 (12), 000 (2023). DOI: 10.3367/UFNe.2023.02.039323
  16. E.M. Villota, H. Lei, M. Qian, Z. Yang, S.M.A. Villota, Y. Zhang, G. Yadavalli. ACS Sustainable Chem. Eng., 6, 1318 (2017). DOI: 10.1021/acssuschemeng.7b03669
  17. K.Y. Foo, B.H. Hameed. Chem. Eng. J., 180, 66 (2012). DOI: 10.1016/j.cej.2011.11.002
  18. P. Pre, G. Huchet, D. Jeulin, J.N. Rouzaud, M. Sennour, A. Thorel. Carbon, 52, 239 (2013). DOI: 10.1016/j.carbon.2012.09.026
  19. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing. Pure Appl. Chem., 87, 1051 (2015). DOI: 10.1515/pac-2014-1117
  20. M. Oschatz, P. Pre, S. Dorfler, W. Nickel, P. Beaunier, J.N. Rouzaud, C. Fischer, E. Brunner, S. Kaskel. Carbon, 105, 314 (2016). DOI: 10.1016/j.carbon.2016.04.041
  21. T.C. Petersen, I.K. Snook, I. Yarovsky, D.G. McCulloch, B. O'Malley. J. Phys. Chem., 111, 802 (2007). DOI: 10.1021/jp063973f
  22. C. Prehal, C. Koczwara, N. Jackel, H. Amenitsch, V. Presser, O. Paris. Phys. Chem. Chem. Phys., 19, 15549 (2017). DOI: 10.1039/C7CP00736A
  23. S. Yorgun, D. Yi ldi z, Y.E. Sim sek. Energy Sources, 38, 2035 (2016). DOI: 10.1080/15567036.2015.1030477
  24. A.M. de Yuso, B. Rubio, M.T. Izquierdo. Fuel Process Technol., 119, 74 (2014). DOI: 10.1016/j.fuproc.2013.10.024
  25. I. Demiral, C.A. Samdan. Anadolu. Univ. J. Sci. Technol. A Appl. Sci. Eng., 17 (1), 125 (2016). DOI: 10.18038/btda.64281
  26. V. Mamontov, V.N. Nefedov, S.A. Khritkin. Measurement Techniques, 61, 723 (2018). DOI: 10.1007/s11018-018-1491-5
  27. GOST 4453-74 Ugol aktivirovanny osvetlyayuschiy drevesny poroshkoobrazny (Izd-vo standartov, M., 1993)
  28. A.V. Buzmakov, V.E. Asadchikov, D.A. Zolotov, B.S. Roshchin, Yu.M. Dymshits, V.A. Shishkov, M.V. Chukalina, A.S. Ingacheva, D.E. Ichalova, Yu.S. Krivonosov, I.G. Dyachkova, M. Balzer, M. Castele, S. Chilingaryan, A. Kopmann. Crystallogr. Rep., 63, 1057 (2018). DOI: 10.1134/S106377451806007X
  29. D.A. Zolotov, V.E. Asadchikov, A.V. Buzmakov, I.G. Dyachkova, E.V. Suvorov. JETP Lett., 113, 149 (2021). DOI: 10.1134/S0021364021030115
  30. S. Gates-Rector, T. Blanton. Powder Diffr., 34, 352 (2019). DOI: 10.1017/S0885715619000812
  31. J. Fayos. J. Solid State Chem., 148, 278 (1999). DOI: 10.1006/jssc.1999.8448
  32. G.V. Narasimha Rao, V.S. Sastry, M. Premila, A. Bharathi, C.S. Sundar, Y. Hariharan, V. Seshagiri, T.S. Radhakrishnan. Powder Diffr., 11, 5 (1996). DOI: 10.1017/S0885715600008782
  33. V.V. Samonin, V.Yu. Nikonova, A.N. Kim, N.A. Grun. Izvestiya SPbGTI(TU), 8 (2010) (in Russian)
  34. E.M. Slutsker. Adsorbtsionnye svoystva nanostrukturirovannykh uglerodnykh materialov fulleroidnogo tipa (avtoref. kand. diss., SPbGTI(TU), SPb., 2005)
  35. V.I. Berezkin, I.V. Viktorovskii, A.Ya. Vul', L.V. Golubev, V.N. Petrova, L.O. Khoroshko. Semiconductors, 37 (7), 775 (2003). DOI: 10.1134/1.1592849
  36. T. Konno, T. Wakahara, K. Miyazawa, K. Marumoto. New Carbon Mater., 33, 310 (2018). DOI: 10.1016/S1872-5805(18)60341-5

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru