Injection-enhanced annealing kinetics of GaAs-based gamma-irradiated homo- and heterostructures
Nosovets V. S. 1, Tkachev O. V.1, Dubrovskikh S. M.1, Pustovarov V. A. 2
1All-Russia Research Institute of Technical Physics, Russian Federal Nuclear Center, Snezhinsk, Chelyabinsk oblast, Russia
2Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
Email: vadim.vx@yandex.ru, v.a.pustovarov@urfu.ru

PDF
The injection-enhanced annealing kinetics of radiation-induced defects has been studied by electroluminescence intensity measurements for quantum-sized GaAs/AlGaAs heterostructures irradiated with 60Co gamma-quanta. The comparison of the obtained results with the available literature data for GaAs homostructures has revealed that in transition from homostructures to heterostructures the current density, needed for radiation-induced defects annealing, decreases by 2-4 orders and a different mechanism of defect annihilation comes out. The results indicate higher injection-enhanced annealing efficiency in devices containing quantum-sized heterostructures. Keywords: injection-enhanced annealing, recombination-enhanced annealing, radiation resistance, radiation-induced defects.
  1. V.M. Andreev, M.B. Kagan, V.S. Kalinovskii, L.A. Rassadin, V.R. Larionov, T.A. Nuller, V.D. Rumyantsev, K.Ya. Rasulov, Pis'ma Zh. Tekh. Fiz., 14 (2), 121 (1988). https://www.mathnet.ru/rus/pjtf1911
  2. A. Johston, Reliability and radiation effects in compound semiconductors (World Scientific, Singapore, 2010), p. 289-291
  3. A. Khan, M. Yamaguchi, J.C. Bourgoin, T. Takamoto, J. Appl. Phys., 91, 2391 (2002). DOI: 10.1063/1.1433936
  4. J.C. Bourgoin, J.W. Corbett, Rad. Effects, 36, 157 (1978). DOI: 10.1080/00337577808240846
  5. B.L. Gregory, J. Appl. Phys., 36, 3765 (1965). DOI: 10.1063/1.1713944
  6. V.M. Lomako, A.M. Novoselov, Phys. Status Solidi A, 60, 557 (1980). DOI: 10.1002/pssa.2210600227
  7. C.E. Barnes, Phys. Rev. B, 1, 4735 (1970). DOI: 10.1103/PhysRevB.1.4735
  8. M. Yamaguchi, K. Ando, A. Yamamoto, C. Uemura, J. Appl. Phys., 58, 568 (1985). DOI: 10.1063/1.335664
  9. M. Yamaguchi, T. Okuda, S.J. Taylor, Appl. Phys. Lett., 70, 2180 (1997). DOI: 10.1063/1.119034
  10. Y. Zheng, T.-C. Yi, P.-F. Xiao, J. Tang, R. Wang, Chin. Phys. Lett., 33, 056102 (2016). DOI: 10.1088/0256-307X/33/5/056102
  11. J. Chen, Y. Li, H. Maliya, Q. Guo, D. Zhou, L. Wen, Heliyon, 8, e10594 (2022). DOI: 10.1016/j.heliyon.2022.e10594
  12. T. Yi, M. Lu, K. Yang, P. Xiao, R. Wang, Nucl. Instrum. Meth. Phys. Res. B, 335, 66 (2014). DOI: 10.1016/j.nimb.2014.06.006
  13. Springer handbook of electronic and photonic materials, ed. by S. Kasap, P. Capper (Springer, Cham, 2017). p. 1038--1041. DOI: 10.1007/978-3-319-48933-9
  14. F. Schubert, Light-emitting diodes (Cambridge University Press, N.Y., 2006). DOI: 10.1017/CBO9780511790546
  15. D. Peak, H.L. Frish, J.W. Corbett, Rad. Effects, 11, 149 (1971). DOI: 10.1080/00337577108231100

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru