Tunnel diodes n++-GaAs:(δ-Si)/p++-Al0.4Ga0.6As:(C) for connecting elements of multijunction laser photoconverters
Kalinovskii V. S.1, Maleev N. A.1, Kontrosh E. V.1, Vasil`ev A. P.2, Prudchenko K K.1, Tolkachev I. A.1, Malevskaya A. V.1, Ustinov V. M.1,2
1Ioffe Institute, St. Petersburg, Russia
2Submicron Heterostructures for Microelectronics, Research & Engineering Center, RAS, Saint-Petersburg, Russia
Email: vitak.sopt@mail.ioffe.ru

PDF
Based on mathematical modeling, there has been proposed a new type of thermally stable connecting tunnel diode with an intermediate i-layer, which is promising for implementing highly efficient multijunction laser photoconverters. Two types of the n++-GaAs/p++-Al0.4Ga0.6As tunnel diode structures have been grown by molecular beam epitaxy: with and withput the intermediate i-GaAs layer. It has been experimentally demonstrated that the inclusion of a nanoscale i-layer between the n++- and p++-regions of the tunnel diode provides an increase in the density of peak tunneling current Jp. Due to the epitaxial wafer annealing which simulates a long-term process of epitaxial growth of multijunction laser-radiation photoconverters, the structure with the i-layer exhibited a 30-% increase in peak tunneling current Jp. Keywords: mathematical modeling, connecting tunnel diode, i-layer, molecular beam epitaxy, multijunction laser photoconverter.
  1. D.F. Zaytsev, V.M. Andreev, I.A. Bilenko, A.A. Berezovsky, P.Yu. Vladislavsky, Yu.B. Gurfinkel, L.I. Tsvetkova, V.S. Kalinovskii, N.M. Kontdratev, V.N. Kosolobov, V.F. Kurochkin, S.O. Slipchenko, N.V. Smirnov, B.V. Yakovlev, Radiotekhnika, 85 (4), 153 (2021). DOI: 10.18127/j00338486-202104-17 (in Russian)
  2. M. Ishigaki, S. Fafard, D.P. Masson, M.M. Wilkins, C.E. Valdivia, K. Hinzer, in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC) (IEEE, 2017), p. 2312--2316. DOI: 10.1109/APEC.2017.7931022
  3. H. Helmers, C. Armbruster, M. von Ravenstein, D. Derix, C. Schoner, IEEE Trans. Power Electron., 35, 7904 (2020). DOI: 10.1109/TPEL.2020.2967475
  4. S. Fafard, D.P. Masson, J. Appl. Phys., 130, 160901 (2021). DOI: 10.1063/5/0070860
  5. T. Takamoto, M. Yumaguchi, E. Ikeda, T. Agui, H. Kurita, M. Al-Jassim, J. Appl. Phys., 85, 1481 (1999). DOI: 10.1063/1.369278
  6. W. Walukiewicz, Physica B, 302-303, 123 (2001). DOI: 10.1016/s0921-4526(01)00417-3
  7. V.S. Kalinovskii, E.V. Kontrosh, G.V. Klimko, S.V. Ivanov, V.S. Yuferev, B.Y. Ber, D.Y. Kazantsev, V.M. Andreev, Semiconductors, 54, 355 (2020). DOI: 10.1134/S1063782620030112
  8. M. Baudrit, C. Algora, IEEE Trans. Electron Dev., 57, 2564 (2010). DOI: 10.1109/TED.2010.2061771
  9. V.A. Bogdanova, N.A. Davletkildeev, N.A. Semikolenova, E.N. Sidorov, Semiconductors, 36, 385 (2002). DOI: 10.1134/1.1469184.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru