Grigorieva N.V.
1,2, Rozhnev A.G.
1,2, Ryskin N.M.
1,21Saratov Branch, Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov, Russia
2Saratov State University, Saratov, Russia
Email: preobnv@gmail.com
In this paper, synchronization of a gyrotron by an external harmonic signal is analyzed based on a model with the Gaussian fixed structure of a high-frequency field using preliminary calculated complex gain factor. Stability conditions of the synchronization regimes with variation of beam current and cyclotron resonance mismatch are analyzed at different values of the driving amplitude. The dependences of the transversal efficiency (i.e., the portion of transverse energy given by electrons to the field) on these parameters are plotted. Optimal parameter values have been found at which, in the synchronization regime, an efficiency close to the maximal for an autonomous gyrotron is achieved, and a wide synchronization band is also ensured. Keywords: gyrotron, synchronization, injection locking, bifurcation.
- M. Thumm. J. Infrared Millim., Terahertz Waves, 41, 1 (2020). DOI: 10.1007/s10762-019-00631-y
- M.K.A. Thumm, G.G. Denisov, K. Sakamoto, M.Q. Tran. Nucl. Fusion, 59, 073001 (2019). DOI: 10.1088/1741-4326/ab2005
- A.G. Litvak, G.G. Denisov, M.Y. Glyavin. IEEE J. Microw., 1, 260 (2021). DOI: 10.1109/JMW.2020.3030917
- R. Ikeda, K. Kajiwara, T. Nakai, T. Ohgo, S. Yajima, T. Shinya, Y. Mitsunaka, Y. Oda, T. Kobayashi, K. Takahashi, S. Moriyama, T. Eguchi, K. Sakamoto. Nucl. Fusion, 61, 106031 (2021). DOI: 10.1088/1741-4326/ac21f7
- T. Rzesnicki, Z.C. Ioannidis, K.A. Avramidis, I. Chelis, G. Gantenbein, J.-P. Hogge, S. Illy, J. Jelonnek, J. Jin, A. Leggieri, F. Legrand, I.Gr. Pagonakis, F. Sanchez, M. Thumm. IEEE Electron Device Lett., 43, 623 (2022). DOI: 10.1109/LED.2022.3152184
- G.G. Denisov, A.N. Kuftin, V.N. Manuilov, N.A. Zavolsky, A.V. Chirkov, E.A. Soluyanova, E.M. Tai, M.I. Bakulin, A.I. Tsvetkov, A.P. Fokin, Y.V. Novozhilova, B.Z. Movshevich, M.Yu. Glyavin. Microwave Opt. Technol. Lett., 62, 2137 (2020). DOI: 10.1002/mop.32330
- G. Denisov, A. Kuftin, V. Manuilov, A. Chirkov, L. Popov, V. Zapevalov, A. Zuev, A. Sedov, I. Zheleznov, M. Glyavin. Nucl. Fusion, 62, 036020 (2022). DOI: 10.1088/1741-4326/ac4946
- A.V. Chirkov, G.G. Denisov, A.N. Kuftin. Appl. Phys. Lett., 106, 263501 (2015). DOI: 10.1063/1.4923269
- V.L. Bakunin, Yu.M. Guznov, G.G. Denisov, N.I. Zaitsev, S.A. Zapevalov, A.N. Kuftin, Yu.V. Novozhilova, A.P. Fokin, A.V. Chirkov, A.S. Shevchenko. Radiophys. Quant. Electron., 62, 481 (2019). DOI: 10.1007/s11141-020-09994-y
- A.N. Kuftin, G.G. Denisov, A.V. Chirkov, M.Yu. Shmelev, V.I. Belousov, A.A. Ananichev, B.Z. Movshevich, I.V. Zotova, M.Yu. Glyavin. IEEE Electron Device Lett., 44, 1563 (2023). DOI: 10.1109/LED.2023.3294755
- I.G. Zarnitsyna, G.S. Nusinovich. Radiophys. Quant. Electron., 18, 339 (1975). DOI: 10.1007/BF01036701
- V.S. Ergakov, M.A. Moiseev, V.I. Khizhnyak. Radiotekhnika i elektronika, 23, 2591 (1978) (in Russian)
- A.W. Fliflet, W.M. Manheimer. Phys. Rev. A, 39, 3432 (1989). DOI: 10.1103/PhysRevA.39.3432
- A.H. McCurdy, A.K. Ganguly, C.M. Armstrong. Phys. Rev. A, 40, 1402 (1989). DOI: 10.1103/ PhysRevA.40.1402
- P.E. Latham, B. Levush, G.S. Nusinovich, S. Parikh. IEEE Trans. Plasma Sci., 22, 818 (1994). DOI: 10.1109/27.338297
- N.S. Ginzburg, A.S. Sergeev, I.V. Zotova. Phys. Plasmas, 22, 033101 (2015). DOI: 10.1063/1.4913672
- V.L. Bakunin, G.G. Denisov, Yu.V. Novozhilova. Tech. Phys. Lett., 40, 382 (2014). DOI: 10.1134/S1063785014050034
- V.L. Bakunin, G.G. Denisov, Yu.V. Novozhilova. Radiophys. Quant. Electron., 58, 893 (2016). DOI: 10.1007/s11141-016-9663-0
- Yu.V. Novozhilova, G.G. Denisov, M.Yu. Glyavin, N.M. Ryskin, V.L. Bakunin, A.A. Bogdashov, M.M. Melnikova, A.P. Fokin. Izv. vuzov. Prikladnaya nelineynaya dinamika, 25 (1), 4 (2017) (in Russian). DOI: 10.18500/0869-6632-2018-26-6--68-81
- V.L. Bakunin, G.G. Denisov, Y.V. Novozhilova. IEEE Electron Device Lett., 41, 777 (2020). DOI: 10.1109/LED.2020.2980218
- G.S. Nusinovich. Introduction to the Physics of Gyrotrons (The Johns Hopkins University Press, Baltimore, London, 2004)
- A.B. Adilova, N.M. Ryskin. Radiophys. Quant. Electron., 63, 703 (2021). DOI: 10.1007/s11141-021-10091-x
- A.B. Adilova, N.M. Ryskin. Electronics, 11, 811 (2022). DOI: 10.3390/electronics11050811
- N.V. Grigorieva. Izv. vuzov. Prikladnaya nelineynaya dinamika, 29, 905 (2021) (in Russian). DOI: 10.18500/0869-6632-2021-29-6-905-914
- N.V. Grigorieva, N.M. Ryskin. Radiophys. Quant. Electron., 65, 371 (2022). DOI: 10.52452/00213462_2022_65_05_406
- P.S. Landa. Avtokolebaniya v sistemakh s konechnym chislom stepeney svobody (Nauka, M., 2019) (in Russian)
- A.P. Kuznetsov, S.P. Kuznetsov, N.M. Ryskin. Nelinejnye kolebaniya (URSS, M., 2020)
- K.A. Yakunina, A.P. Kuznetsov, N.M. Ryskin. Phys. Plasmas, 22, 113107 (2015). DOI: 10.1063/1.4935847
- A.B. Adilova, N.V.Grigoryeva, A.G. Rozhnev, N.M. Ryskin. Radiophys. Quant. Electron., 66, 143 (2023). DOI: 10.1007/s11141-023-10282-8
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.