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Theoretical analysis of a gyrotron driven by an external harmonic signal
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In this paper, synchronization of a gyrotron by an external harmonic signal is analyzed based on a model with

the Gaussian fixed structure of a high-frequency field using preliminary calculated complex gain factor. Stability

conditions of the synchronization regimes with variation of beam current and cyclotron resonance mismatch are

analyzed at different values of the driving amplitude. The dependences of the transversal efficiency (i.e., the portion
of transverse energy given by electrons to the field) on these parameters are plotted. Optimal parameter values

have been found at which, in the synchronization regime, an efficiency close to the maximal for an autonomous

gyrotron is achieved, and a wide synchronization band is also ensured.
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Introduction

Cyclotron resonance masers, in particular gyrotrons,

provide the highest power output levels in the millimeter

and submillimeter wavelength ranges [1]. Currently, the

electron cyclotron plasma heating in controlled thermonu-

clear fusion plants is one of the most important applications

of gyrotrons [1–5]. Complexes of a large number of

gyrotrons are usually used for these purposes, therefore it

is important task to ensure their coherent operation. In

particular, the idea of synchronizing a powerful gyrotron

with a gyrotron driver signal with a stabilized frequency

attracted attention [6,7]. Quasi-optical mode converters that

convert an external signal into the operating mode of the

gyrotron resonator have been developed for solving this

problem [7,8]. Demonstration experiments were conducted

in the lower frequency range of 35GHz [9], and an experi-

ment has been conducted most recently for synchronization

of a powerful gyrotron with a frequency of 170 GHz under

the impact of the input signal of a stabilized gyrotron

driver [10].

The gyrotron synchronization by an external signal was

theoretically studied earlier in many papers (see, for

example, [11–21]), mainly using numerical modeling based

on various models of the nonstationary theory of the

gyrotron. In particular, it was found that exposure to an

external signal helps to suppress parasitic modes and in

some cases contributes to an increase of the generation

efficiency [17–20]. However, building a detailed picture of

synchronization using computer modeling is a very time-

consuming task, especially in the presence of several inter-

acting modes since this system is characterized, generally

speaking, by a large number of control parameters. In this

regard, it is of obvious interest to study the fundamental laws

of gyrotron synchronization using methods of oscillation

theory and nonlinear dynamics.

The study of the nonlinear dynamics of a gyrotron with

a fixed structure of a radio-frequency (RF) field can be

significantly simplified using the approach developed in

Ref. [22–25]. This approach is based on the fact that the

electron susceptibility, which determines the power of the

interaction of the beam with the field, is expressed as a

function of the amplitude of the field using interpolation of

pre-calculated dependencies. In this case, the description is

reduced to a dynamic system with one degree of freedom,

for which the main results can be obtained, essentially

analytically, without numerical integration of differential

equations describing the dynamics of an electron beam

under the action of an RF field. Specifically, the analysis

of mutual [22,23] and forced [24,25] synchronization of

gyrotrons was carried out based on this technique. It should

be noted that the synchronization pattern depending on the

amplitude and frequency of the external signal was studied

in Ref. [24,25]. However, it is customary in the theory of the

gyrotron to analyze the generation modes on the plane of

the parameters of the magnetic field-beam current (see, for
example, [17–21]). The results of such an analysis in relation

to the gyrotron synchronization problem are provided in this

paper. The main attention is paid to the possibilities of

increasing efficiency in case of external signal impact.

1. Model and basic equations

Let’s use the well-known equations of the nonstationary

theory of a gyrotron with a fixed RF field structure (see, for
example, [21]). The field in the resonator in this case can
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be represented as the product of a complex amplitude A,
slowly changing in comparison with the eigen frequency,

and the function f (ζ ), which describes the distribution of

the field in the resonator (ζ — dimensionless longitudinal

coordinate). For simplicity, let’s limit ourselves to the

interaction of an electron beam with a single resonator mode

on the fundamental cyclotron harmonic. Then the equation

of electron motion and boundary conditions will be written

as follows:

d p
dζ

+ i
(

1H + |p|2 − 1
)

p = iA f (ζ ),

p(ζ = 0) = eiφ0 . (1)

Here p — normalized transverse momentum, 1H —
cyclotron resonance mismatch proportional to the difference

between the eigen frequency of the operating mode of

the resonator ω0 and the cyclotron frequency ωH , φ0 —
the initial phases of electrons, which are considered to be

uniformly distributed over the interval [0; 2π].
The dynamics of the oscillation amplitude is described by

the resonator excitation equation

dA
dτ

+ A = iI0

ζL
∫

0

J(ζ , τ ) f ∗(ζ )dζ . (2)

Here τ — dimensionless time, I0 — a parameter that

makes sense of the normalized electron beam current, ζL —
the length of the interaction space,

J =
1

2π

2π
∫

0

pdφ0 (3)

— the complex amplitude of the RF harmonic current, the

symbol ≪*≫ indicates a complex conjugate. All variables

in (1)−(3) are dimensionless, the normalization of variables

is described in detail in Ref. [22–25].
There is an approach that can significantly simplify the

analysis of self-oscillations in a gyrotron with a fixed RF field

structure. We introduce a complex function of electronic

susceptibility

8 =
i
A

ζL
∫

0

J(ζ , τ ) f ∗(ζ )dζ , (4)

which determines the power of the interaction of the

beam with the resonator field. If we perform a series

of calculations using equations (1) for different values of

cyclotron resonance mismatch 1H and field amplitude A,
and then interpolate the calculated dependencies, then

the susceptibility can be expressed as a function of two

variables: 8 = 8(|A|, 1H). Then the excitation equation (2)
has the following form

dA
dτ

+ A = I08(|A|, 1H)A. (5)

Therefore, for describing the dynamics of oscillations in

a gyrotron, we obtain a dynamic system with one degree of

freedom, the study of which is greatly simplified. Ref. [22–
25] showed that the results obtained using this approach

are completely consistent with the results of numerical

modeling based on the equations of the nonstationary theory

of a gyrotron with a fixed field structure (1)−(3).
Figure 1 shows the real (active) and imaginary (reactive)

parts of the electron susceptibility calculated for the case of

a Gaussian field distribution in a resonator

f (ζ ) = exp

[

−3

(

2ζ

ζL
− 1

)2]

(6)

at µ = 15.0, where µ = ζL/
√
3 is a dimensionless parameter

determining the width of the RF field distribution by

level e−1.

It should be noted that the following equations follow

from (5) in the stationary generation mode, when it is

possible to put A = a0 exp(i(�0τ + ϕ0)), where a0, �0 and

ϕ0 are considered real

I0Re8(a0, 1H) = 1,

�0 = I0Im8(a0, 1H) =
Im8(a0, 1H)

Re8(a0, 1H)
, (7)

determining the amplitude and frequency of the oscillation.

It is not difficult to generalize the theoretical model

described above to the situation when the gyrotron is under

the impact of an external signal. In this case, equation (5)
is modified as follows (see, for example, [18,19,24,25]):

dA
dτ

+ A = I08(|A|, 1H)A + 2Fei�τ . (8)

Here F is the amplitude of the external signal, and

� is the dimensionless mismatch between the frequency

of the external signal and the eigen frequency of the

resonator ω0. It is possible to show that we have

F/|A| ≈ √
P in/Pout with the selected normalization of the

amplitude of the external signal, where P in — the power

of the external signal, Pout — the output power of the

gyrotron [12,19]. It is convenient to make a replacement

A = a(τ ) exp
(

i(�τ + ϕ(τ ))
)

. Then a system of two real

equations follows from (8)

da
dτ

+ a = I0Re8(a, 1H)a + 2F cosϕ,

dϕ
dτ

+ � = I0Im8(a, 1H) − 2F
a

sinϕ. (9)

A theoretical analysis of synchronization modes was

conducted based on the model (9) in Ref. [24,25] and

the main bifurcation mechanisms resulting in the setting

of synchronous modes were identified. At the same time,

this model allows calculating the values of quantitative

parameters that are important from a practical point of view,

such as efficiency, synchronization bandwidth, etc.
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Figure 1. Dependences of active (a) and reactive (b) electronic susceptibility on the amplitude of oscillations a0 and the cyclotron

resonance mismatch 1H at µ = 15.

2. Conditions for the stability of
synchronization modes

Let’s consider the synchronization mode, when fluctua-

tions are set at the frequency of external driving with a

constant amplitude. They correspond to the fixed points of

the system (9) a = a0, ϕ = ϕ0. In this case, the following

relations are derived from (9)

1− I0Re8(a0, 1H) =
2F
a0

cosϕ0,

�− I0Im8(a0, 1H) = −2F
a0

sinϕ0, (10)

which, at F = 0, obviously pass into (7). It is possible

to obtain the equation of resonant curves if ϕ0 phase is

excluded from (10)

(

1− I0Re8(a0, 1H)
)2

+
(

�− I0Im8(a0, 1H)
)2

=
4F2

a2
0

.

(11)
The stability conditions of fixed points can be found by

using a standard procedure for linearization of equations (9)
(for more details, see [24,25]). As a result, it is possible to

obtain a characteristic equation of the following form

p2 + 2k p + n = 0, (12)

where the following notation is introduced

k = 1− I0Re8(a0, 1H) − I0
∂Re8(a0, 1H)

∂a0

a2
0, (13)

n =

[

1− I0Re8(a0, 1H) − I0
∂Re8(a0, 1H)

∂a0

a2
0

]2

+

[

�− I0Im8(a0, 1H) − I0
∂Im8(a0, 1H)

∂a0

a2
0

]2

− I20

[(

∂Re8(a0, 1H)

∂a0

)2

+

(

∂Im8(a0, 1H)

∂a0

)2]

a4
0.

(14)

The fixed point is stable at Rep < 0, which occurs when

the conditions k > 0 and n > 0 are met.

Therefore, it is possible to construct the boundaries of the

stability domain in the space of control parameters. The ra-

tio n = 0 gives the boundary of the saddle node bifurcation,

i.e. the boundary of the merging and disappearance of two

fixed points. The ratio k = 0 defines the boundary of the

Andronov-Hopf bifurcation, i.e. the bifurcation of the birth

of the limit cycle from a fixed point. These bifurcations

correspond to the known mechanisms of frequency locking

and suppression of natural dynamics in the context of the

problem of synchronizing the generator with an external

harmonic signal [26,27].
The pattern of resonance curves was analyzed in

Ref. [24,25], depending on the parameters of the external

signal F and �. However, as already noted, the analysis is

more interesting depending on the parameters I0 and 1H ,

i.e., in fact, depending on the beam current and the magnetic

field.

3. Simulation results

Let’s first consider an autonomous gyrotron. Fig. 2, a

shows the dependences of the field amplitude on the

cyclotron resonance mismatch at different values of the

parameter I0. The values of the transverse electron

efficiency (i.e., the proportion of rotational energy given by

electrons to the field) are of greater interest from a practical

point of view

η = 1− 1

2π

2π
∫

0

|p(ζL)|2dϕ0. (15)

It is not difficult to show (see, for example, [12,21–25])
that in stationary mode, efficiency is associated with active

susceptibility by the ratio

η = 2Re8(a0, 1H)a2
0. (16)
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Figure 2. Dependences of amplitude (a) and transverse efficiency (b) on the cyclotron resonance mismatch of an autonomous gyrotron

with different current values. Stable states are shown by solid lines, unstable states are shown by dashed lines.

The corresponding dependencies are shown in Fig. 2, b.

It can be seen that the maximum efficiency shifts to the

area of large mismatch with an increase of current. The

absolute maximum efficiency of ηmax can be found from

the conditions ∂η/∂a0 = 0, ∂η/1H = 0. At chosen value of

the dimensionless length of the interaction space (µ = 15.0)
ηmax ≈ 0.706 is achieved with 1H = 1max ≈ 0.534 and

a0 = amax ≈ 0.144 and these values do not change even

in the presence of an external signal.

It can also be concluded based on Fig. 2 that depen-

dencies become multivalued with increase of the detuning.

The state with a larger amplitude value is stable in this

case, the state with smaller amplitude is unstable [24,25],
and, additionally, the zero solution is stable. This situation

corresponds to the hard excitation of oscillations [24–28].
It should be noted that the maximum possible efficiency is

achieved in the hard excitation mode.

Also, the
”
hot“ eigen frequency can be deter-

mined from the second equation of the system (7).
�0(amax, 1max) ≈ −0.75 in the maximum efficiency point.

The frequency of external driving should be close to this

value for achieving the maximum efficiency value in the

synchronization mode.

Let’s choose the value of the frequency of the external

signal � = −0.75, which is close to the value of

�0(amax, 1max), and the value of the normalized current

I0 = 0.02, i.e. about three times lower than that at which the

maximum efficiency is achieved in an autonomous gyrotron.

Let’s consider the synchronization modes at different

values of the amplitude of the external signal. Fig. 3, a

shows the dependences of the oscillation amplitude on 1H .

Qualitatively, they are similar to the pattern of the resonant

curves of the Van der Pol–Duffing self-excited oscillator

under external impact, which is described in detail in the

literature (see, for example, [21,26,27]). It should be noted

that the dependencies a0(1H) have a simpler and more

understandable structure than the dependencies a0(�) for

the case of hard excitation, presented in [24–28]. At low F ,

the resonance curves consist of two branches. The lower

branch corresponds to the mode of forced oscillations with a

small amplitude and is located near the horizontal axis. The

upper branch corresponds to the locking mode. It encircles

the point at which the resonance curves (11) degenerate at

F = 0. The lower branch connects with the upper branch

with an increase of F . Obviously, this situation is most favor-

able from a practical point of view, since the synchronization

mode is stable over a fairly wide range of changes in the

cyclotron resonance mismatch. The stability boundaries are

also plotted on Fig. 3, i.e. curves on which the conditions

of saddle node bifurcation (SN) and Andronov-Hopf

bifurcation (AH) are fulfilled, which are determined by the

conditions n = 0 and k = 0, respectively. The first of them

is a closed curve that intersects the dependencies a0(1H)
at those points where the tangent to them is vertical.

The amplitude of the oscillations increases when moving

along the resonant curve as 1H increases and reaches its

maximum value, then the amplitude of the oscillations

begins to decrease and reaches the point of saddle node

bifurcation. An abrupt decrease of amplitude occurs in this

point. The transition to the mode with a large amplitude

occurs at a lower value of 1H in case of movement in the

opposite direction of the parameter, i.e. hysteresis occurs.

AH bifurcation will occur with a further decrease of the

detuning. The instability in this region is associated with

the soft occurrence of beats, i.e. quasi-periodic oscillations

(see [28]).

Fig. 3, b shows the corresponding dependencies for

efficiency. It can be seen that the maximum efficiency

increases with an increase of the amplitude of the impact.

So, we have η = 0.69 for DeltaH ≈ 0.53 and F = 0.05,

which is close to the maximum possible value of ηmax

and significantly more than in an autonomous gyrotron at

I0 = 0.02, where η ≤ 0.54. It should be noted that the

power of the external signal is approximately 10% of the

generation power of the autonomous gyrotron.

1 Technical Physics, 2024, Vol. 69, No. 3
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Figure 3. Dependences of amplitude (a) and transverse efficiency (b) on the cyclotron resonance mismatch for a non-autonomous

gyrotron at I0 = 0.02, � = −0.75 and various values F : purple curve — 0.01, red curve — 0.02, green curve — 0.03, orange curve —
0.04, blue curve — 0.05. Stable states are shown by solid lines, unstable states are shown by dashed ones, instability areas are shaded in

gray.
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Figure 4 shows the dependence of efficiency on mis-

match, plotted with other values of the parameter I0. The

dependencies η(1H) for an autonomous gyrotron are also

provided for comparison. It can be seen that the power of

Technical Physics, 2024, Vol. 69, No. 3
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the external signal at which maximum efficiency is achieved

decreases with the increase of the current. However,

the synchronization band becomes narrower in this case.

Moreover, the shape of the resonance curves becomes

more complicated, and dips are formed on them. The

resonance curves has the form of lemniscate at currents

close to the values at which optimal efficiency values

are achieved in an autonomous gyrotron (Fig. 4, c). The

reasons for this transformation were described in Ref. [25].
A similar behavior was also observed in the case of

gyrotron synchronization by pre-modulation of the electron

beam [11,21]. In general, it seems it is more efficient

that from the point of view of synchronization to work

at a current significantly lower than the current at which

maximum efficiency is achieved in an autonomous gyrotron.

At the same time, it is possible to significantly increase

efficiency and provide a synchronization band comparable

in width to the generation zone of an autonomous gyrotron.

It should also be noted that the area of detuning at which

high efficiency values are achieved shifts to the right with

an increase of F and is outside the generation zone of the

autonomous gyrotron. In this case, we actually do not deal

with synchronization, but with a regenerative amplification

mode (for more information, see [25,28]).

It is also helpful to analyze the dependences of the

oscillation amplitude and efficiency on the normalized beam

current. Let’s choose a fixed value of the cyclotron

resonance mismatch 1H = 1max ≈ 0.534. A pattern of de-

pendencies a0(I0) is shown on Figure 5, a. The boundaries

of the AH bifurcation and saddle node bifurcation are also

plotted. Dependencies a0(I0) consist of two branches. The

upper branch is closed with a small amplitude of external

driving. The structure of the resonance curves changes

at F ≈ 0.036: the branches overlap. It should be noted

that multistability takes place in a certain range of the

current parameter: one value I0 corresponds to three values

of the oscillation amplitude at once, two of which are

stable. The state with a higher amplitude corresponds to

the synchronization mode, the state with a lower amplitude

corresponds to the forced oscillations mode with a small

amplitude.

Fig. 5, b shows similar dependencies for efficiency. The

dependencies η(I0) have the form of lemniscate in case

of small values of F . There are also lower branches

corresponding to forced oscillations with a small amplitude,

but the efficiency for them does not exceed 0.01 and they

are not shown in Fig. 5, b. The figure shows that the

maximum value of efficiency ηmax is reached with any

amplitude of the external signal, and the lower is the F ,
the greater is the corresponding current value.

4. Conclusion

Gyrotron synchronization modes are theoretically investi-

gated in this paper based on the model with a fixed field

structure using approximations of pre-calculated functions of

active and reactive electron susceptibility. The dependences

of the oscillation amplitude and efficiency on the cyclotron

resonance mismatch and the normalized electron beam

current at different amplitudes of the external signal are

analyzed. The results obtained show that the situation when

the operating current of the gyrotron is significantly (by 2−3

times) lower than the current at which the maximum

efficiency is achieved in an autonomous gyrotron. A similar

situation is typical, in particular, for recent experiments with

gyrotron synchronization with an auxiliary gyrotron driver

with a stabilized frequency [10]. In this case, exposure to an

external signal allows raising the efficiency to the maximum

possible values and providing a wide synchronization band.

At the same time, high efficiency values are achieved in

the area of cyclotron resonance mismatch lying outside

the autonomous gyrotron syhchronization zone, i.e., strictly

speaking, not in synchronization mode, but in regenerative

amplification mode.

1∗ Technical Physics, 2024, Vol. 69, No. 3
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In conclusion, it should be noted that the mode competi-

tion processes significantly influence the gyrotron dynamics.

It is known that exposure to an external signal contributes

to the suppression of parasitic modes [17–20]. Taking into

account the interaction of modes significantly complicates

the analysis of synchronization modes. However, the

methodology used in the work can be adapted to analyze

stability with respect to the excitation of parasitic modes.

The results of such an analysis for an autonomous gyrotron

with a quasi-equidistant mode spectrum were presented in

Ref. [29]. Clarifying the synchronization pattern, taking into

account the competition of modes, will be the subject of

further research.
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