Laser-stimulated metal-induced crystallization of silicon coatings on film and nanofiber polymer substrates
Serdobintsev A. A.
1, Kartashova A. M.
1, Demina P. A.
1, Volkovoynova L. D.
1, Kozhevnikov I. A.
1, Galushka V. V.
11Saratov State University, Saratov, Russia
Email: SerdobintsevAA@sgu.ru, nasty280801@gmail.com, loris.volkoff@gmail.com, kozhevnikov_io@mail.ru, gwiktor@mail.ru
The development of basic technological approaches to the creation of flexible electronic devices is an actual problem nowadays. This paper presents the results of forming nanocrystalline silicon coatings on various kinds of flexible polymer substrates. The coatings were obtained by laser-stimulated metal-induced crystallization. Fully crystallized silicon films on an area of 30x 30 μm on a polyimide film substrate using this technique were obtained. The applicability of this technique to the silicon coating on a nanofiber polymer substrate obtained by electrospinning is demonstrated. The range of laser fluence value which leads to the crystallization of silicon with minimal damage to nanofiber substrates has been determined. The degree of damage to the substrates was assessed using scanning electron microscopy. The results of experimental studies confirming the formation of crystallized silicon coatings on nanofiber polymer substrates are presented. Keywords: flexible electronics, metal-induced silicon crystallization, laser-induced silicon crystallization, infrared laser, nanofiber nonwovens.
- M. Benelmekki, A. Erbe. Front. Nanosci, 14, 1 (2019). DOI: 10.1016/B978-0-08-102572-7.00001-5
- H.Y. Xu, M.K. Akbari, S. Zhuiykov. Nanoscale Res. Lett., 16 (1), 94 (2021). DOI: 10.1186/s11671-021-03551-w
- R. Zhang. Appl. Comput. Eng., 23 (1), 96 (2023). DOI: 10.54254/2755-2721/23/20230618
- A.J. Lovett, V. Daramalla, D. Nayak, F. N. Sayed, A. Mahadevegowda, C. Ducati, B.F. Spencer, S.E. Dutton, C.P. Grey, J.L. MacManus-Driscoll. Adv. Energy Mater., 13 (38), 2302053 (2023). DOI: 10.1002/aenm.202302053
- T.M. Mazur, V.V. Prokopiv, M.P. Mazur, U.M. Pysklynets. Phys. Chem. Solid State, 22 (4), 817 (2021). DOI: 10.15330/pcss.22.4.817-827
- L. Feng, S. Song, H. Li, R. He, S. Chen, J. Wang, G. Zhao, X. Zhaol. Metals, 13 (4), 792 (2023). DOI: 10.3390/met13040792
- S. Sreejith, J. Ajayan, Sreedhar Kollem, B. Sivasankari. Silicon, 14, 8277 (2022). DOI: 10.1007/s12633-021-01644-w
- J. Hou, B. Yang, X. Li, C. Ma, B. Wang, H. Long, Ch. Yang, Sh. Chen. J. Nanophoton., 14 (1), 016008 (2020). DOI: 10.1117/1.JNP.14.016008
- N. Vouroutzis, J. Stoemenos, N. Frangis, G.Z. Radnoczi, D. Knez, F. Hofer, B. Pecz. Sci. Rep., 9, 1, (2019). DOI: 10.1038/s41598-019-39503-9
- M.D. Efremov, V.A. Volodin, L.I. Fedina, A.A. Gutakovsky, D.V. Marin, S.A. Kochubey, A.A. Popov, Yu.A. Minakov, V.N. Ulasyuk. Pisma v ZhTF, 29 (13), 89 (2003) (in Russian)
- T.T. Korchagina, V.A. Volodin, A.A. Popov, K.S. Khorkov, M.N. Gerke. Tech. Phys. Lett., 37 (7), 622 (2011). DOI: 10.1134/S1063785011070091
- A.A. Serdobintsev, I.O. Kozhevnikov, A.V. Starodubov, P.V. Ryabukho, V.V. Galushka, A.M. Pavlov. Phys. Status Solidi A, 216 (11) 1800964 (2019). DOI: 10.1002/pssa.201800964
- A.A. Serdobintsev, V.A. Luzanov, I.O. Kozhevnikov, P.V. Ryabukho, D.M. Mitin, D.N. Bratashov, A.V. Starodubov, A.M. Pavlov. J. Phys. Conf. Ser., 1400, 1, (2019). DOI: 10.1088/1742-6596/1400/5/055034
- F.A. Samokhvalov, N.I. Smirnov, A.A. Rodionov, A.O. Zamchiy, E.A. Baranov, Yu.G. Shukhov, A.S. Fedotov, S.V. Starinskiy. Thermophys. Aeromechan., 30 (2), 361 (2023). DOI: 10.1134/S0869864323020178
- L.D. Volkovoynova, I.O. Kozhevnikov, A.M. Pavlov, A.A. Serdobintsev, A.V. Starodubov. Proceed. 8th Intern. Congress on Energy Fluxes and Radiation Effects (EFRE-2022), 8, 916 (2022). DOI: 10.56761/EFRE2022.C3-P-005701
- V.A. Terekhov, E.I. Terukov, Yu.K. Undalov, K.A. Barkov, N.A. Kurilo, S.A. Ivkov, D.N. Nesterov, P.V. Seredin, D.L. Goloshchapov, D.A. Minakov, E.V. Popova, A.N. Lukin, I.N. Trapeznikova. Symmetry, 15 (9), 1800 (2023). DOI: 10.3390/sym15091800
- K. Shrestha. Mater. Res. Society, 1757, 6 (2014). DOI: 10.1557/opl.2014.962
- K. Fabisiak, K. Wielki, W. Frankow, P. Popielarski, A. Dychalska. Walter de Gruyter GmbH, 33, 7 (2015). DOI: 10.1515/msp-2015-0067
- F. Raimondi, S. Abolhassani, R. Brutsch, F. Geiger, T. Lippert, J. Wambach, J. Wei, A. Wokaun. J. Appl. Phys., 88 (6), 3659 (2000). DOI: 10.1063/1.1289516
- D.M. Zhigunov, G.N. Kamaev, P.K. Kashkarov, V.A. Volodin. Appl. Phys. Lett., 113, 5 (2018). DOI: 10.1063/1.5037008
- J. Zi, H. Buscher, C. Falter, W. Ludwig, K. Zhang. Appl. Phys. Lett., 69, 200 (1996). DOI: 10.1063/1.117371
- V.A. Volodin, V.A. Sachkov. J. Experiment. Theor. Phys., 116 (1), 100 (2013). DOI: 10.1134/S1063776112130183
- L.D. Volkovoinova, A.A. Serdobintsev. FTT 12, 2177 (2023) (in Russian). DOI: 10.61011/FTT.2023.12.56753.5004k
- W.S. Khan, M. Ceylan, A. Jabarrania, L. Saeednia, R. Asmatulu. J. Thermal Eng., 3 (4), 1375 (2017). DOI: 10.18186/JOURNAL-OF-THERMAL-ENGINEERING.330180
- B.M. Tarakanov, O.A. Andreeva. Vysokomolekulyarnye soedineniya, A32 (10), 2105 (1990) (in Russian)
- L. Chen, Zh. Shen, J. Liu, J. Liang, X. Wang. RSC Adv., 10 (11), 6356 (2020). DOI: 10.1039/C9RA08881D
- T. Kato, Y. Yamada, Y. Nishikawa, H. Ishikawa, S. Sato. Carbon, 178, 58 (2021). DOI: 10.1016/j.carbon.2021.02.090
- G.J. Qi, S. Zhang, T.T. Tang, J.F. Li, X.W. Sun, X.T. Zeng. Surf. Coat. Technol., 198 (1-3), 300 (2005). DOI: 10.1016/j.surfcoat.2004.10.092
- I. Mirza, A.V. Bulgakov, H. Sopha, S.V. Starinckiy. Frontiers in Nanotechnol., 5, 1 (2023). DOI: 10.3389/fnano.2023.1271832
- S.O. Solodovnikova, L.D. Volkovoynova, A.A. Serdobintsev, A.V. Starodubov, I.O. Kozhevnikov, A.M. Pavlov. J. Phys.: Conf. Series, 2103, 012123 (2021). DOI: 10.1088/1742-6596/2103/1/012123
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.