Synthesis of L-band diplexer for high power operation
K.V. Kobrin1, M.B. Manuilov1
1Southern Federal University, Rostov-on-Don, Russia
Email: m_manuilov@sfedu.ru

PDF
The efficient combined technique is proposed for synthesis of L-band diplexer for high power operation which is necessary, for example, in radar applications. The original diplexer modification is implemented on the base of coaxial cavity resonators with the jump of characteristic impedance. The suggested mushroom design of coaxial resonator provides the compact size due to reducing the electric length of resonator and it is appropriate for high-power operation. The original design of the coaxial-to-strip-line bifurcation is introduced into diplexer as the matching circuit. Synthesis technique of diplexer includes the application of the coupling matrixes technique, solving the eigen-value problems for single resonator and two coupled resonators, full-wave simulation based on finite element technique. As a result of synthesis high electrical performances of diplexer were obtained. Within frequency bands of diplexer 1024-1036/1084-1096 MHz the reflection coefficient is less than S11 < -22 dB, the channels isolation is better -70 dB, insertion loss is -0.4 dB, maximal operational power is 2 kW. The proposed design of diplexer is appropriate for implementation within the operational frequency bands of mobile and satellite communications. Keywords: Diplexer, band-pass filter, coaxial resonator filter, coaxial-to-strip-line transition, coupling matrix, scattering matrix, eigen-value problem.
  1. R.J. Cameron, C.M. Kudsia, R.R. Mansour. Microwave Filters for Communication Systems: Fundamentals, Design and Applications (Hoboken, NJ: Wiley, 2018)
  2. R.R. Mansour. Proc. Radio and Wireless Conf. RAWCON'03. (Boston, USA, 2003), p. 373-376, DOI: 10.1109/RAWCON.2003.1227970
  3. I.C. Hunter, L. Billonet, B. Jarry, P. Guillon. IEEE Transactions on Microwave Theory and Tech., 50 (3), 794 (2002). DOI: 10.1109/22.989963
  4. G. Macchiarella, S. Tamiazzo. IEEE Transactions on Microwave Theory and Tech., 58 (12), 3732 (2010). DOI: 10.1109/TMTT.2010.2086570
  5. P. Zhao, K.L. Wu. IEEE MTT-S International Microwave Symposium (IMS2014) (Tampa, FL, USA, 2014), p. 1-3, DOI: 10.1109/MWSYM.2014.6848399
  6. J.B. Thomas. IEEE Transactions on Microwave Theory and Tech., 51 (4), 1368 (2003). DOI: 10.1109/TMTT.2003.809180
  7. K. Kobrin, V. Rudakov, V. Sledkov, Z. Li, M. Manuilov. Conf. Proc. Radiation and Scattering of Electromagnetic Waves (RSEMW-2019), (Divnomorskoe, Russia, 2019), p. 148-151, DOI: 10.1109/RSEMW.2019.8792810
  8. K.V. Kobrin, V.A. Rudakov, Z. Li, M.B. Manuilov. J. Electromagnetic. Waves Appl., 35 (2), 1273 (2021). doi.org/10.1080/09205071.2021.1886998
  9. K. Kobrin, V. Rudakov, Z. Li, V. Sledkov, M. Manuilov. 2020 7th All-Russian Microwave Conference (RMC-2020), (Moscow, Russia, 2020), p. 176-179, DOI: 10.1109/RMC50626.2020.9312259
  10. J.P. Venter, R. Maharaj, T. Stander. IEEE Trans. on Components, Packaging and Manufacturing Technol., 10 (4), 686 (2020). DOI: 101109/TCPMT.2020.2967807
  11. J. Li, G. Huang, T. Yuan, J. Xu, H. Li. Proc. IEEE Intern. Symp. on Antennas and Propagation (Boston, USA, 2018), p. 1439
  12. S.J. Fiedziuszko, I.C. Hunter, T. Itoh, Y. Kobayashi, T. Nishikawa, S.N. Stitzer, K. Wakino. IEEE Transactions on Microwave Theory and Tech., 50 (3), 706 (2002). DOI: 10.1109/22.989956
  13. Z.C. Zhang, Q.X. Chu, S.W. Wong, S.F. Feng, L. Zhu, Q.T. Huang, F.-C. Chen. IEEE Trans. on Components, Packaging and Manufacturing Technol., 6 (3), 383 (2016). DOI: 10.1109/TCPMT.2016.2516820
  14. K.L. Wu. Proc. Asia Pacific Microwave Conf. APMC 2012. (Kaohsiung, Taiwan., 2012), p. 388-390, DOI: 10.1109/APMC.2012.6421607
  15. L. Pelliccia, F. Cacciamani, A. Cazzorla, D. Tiradossi, P. Vallerotonda, R. Sorrentino, W. Steff\`e, F. Vitulli, E. Picchione, J. Galdeano, P. Mart\`in-Igleasias. Proc. 49th European Microwave Conf. (Paris, France, 2019), p. 61-64, DOI: 10.23919/EuMC.2019.8910684
  16. V. Rudakov, V. Sledkov, Z. Li, V. Taranenko, M. Manuilov. Proc. 2023 Radiation and Scattering of Electromagnetic Waves, RSEMW 2023, (Divnomorskoe, Russia, 2023), p. 80-83, DOI: 10.1109/RSEMW58451.2023.10202146
  17. M.B. Manuilov, K.V. Kobrin. Radiophys. Quant. Electron., 59 (4), 301 (2016). DOI: 10.1007/s11141-016-9698-2
  18. G. L. Matthaei, L. Young, M. T. Jones. Microwave Filters, Impedance-Matching Networks, and Coupling Structures. New York: McGraw-Hill, vol. 2, 1964
  19. Electronic media. ANSYS Electromagnetics Suite. Available at: https://www.ansys.com
  20. Electronic media. Available at: http://cernexwave.com/filters-diplexers-2/
  21. Electronic media. Available at: https://rlcelectronics.com/products/filters/high_power_and_ standard_cellular_duplexers/

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru