Thermal-field emission in nanostructures with resonant tunneling
M.V. Davidovich1
1Saratov State University, Saratov, Russia
Email: davidovichmv@info.sgu.ru

PDF
A model of thermal field emission in nanostructures with several barriers and potential wells between them is presented, based on a strict definition of the shape of the quantum potential and a strict solution of the Schrodinger equation, taking into account the thermal balance and the influence of spatial charge. Vacuum and semiconductor resonant tunneling diode and triode structures with two, three or more electrodes are considered. A formula is given for correcting the quantum potential due to the influence of spatial charge. In general, it is necessary to consider two-way tunneling and heating of electrodes with different temperatures due to current flow. Conditions are considered when the contribution of the reverse current is small, when thermal current or tunnel current can be neglected. The approach can be extended to the non-stationary case. Keywords: resonant tunneling, thermal-field emission, vacuum nanotriode, potential barrier, quantum well.
  1. D.I. Proskurovsky. Emissionnaya elektronika (Izd-vo TGU, Tomsk, 2010) (in Russian)
  2. C. Herring, M.H. Nichols. Rev. Mod. Phys., 21 (2), 185 (1949)
  3. W.B. Nottingham. Thermionic Emission. In: Electron-Emission Gas Discharges I / Elektronen-Emission Gasentladungen I. Encyclopedia of Physics / Handbuch der Physik (Springer, Berlin, Heidelberg, 1956), v. 4/21. DOI: 10.1007/978-3-642-45844-6_1
  4. G.N. Fursey. Field Emission in Vacuum Micro-Electronics (Kluwer Academic Plenum Publishers, Springer, NY., 2005)
  5. N. Egorov, E. Sheshin. Field Emission Electronics (Springer Series in Advanced Microelectronics, Springer Nature, 2017), v. 60
  6. L. Kevin, R.G. Forbes. Surf. Interface Anal., 36, 395 (2004). DOI: 10.1002/sia.1900
  7. R.G. Forbes. Royal Society Open Science, 6 (12), 190912 (2019). DOI: 10.1098/rsos.190912
  8. K.L. Jensen. J. Vacuum Sci. Technol. B, 21, 1528 (2003). DOI: 10.1116/1.1573664
  9. W.W. Dolan, W.P. Dyke. Phys. Rev., 95 (2), 327 (1954). DOI: 10.1103/PHYSREV.95.327
  10. A. Modinos. Field, Thermionic, and Secondary Electron Emission Spectroscopy (Plenum, NY., 1984)
  11. E.L. Murphy, R.H. Good. Phys. Rev., 102 (6), 1464 (1956). DOI: 10.1103/PhysRev.102.1464
  12. S. Christov. Phys. Stat. Sol., 17 (11), 11 (1966). DOI: 10.1002/PSSB.19660170103
  13. K.L. Jensen, M. Cahay. Appl. Phys. Lett., 88 (15), 154105 (2006). DOI: 10.1063/1.2193776
  14. K.L. Jensen. J. Appl. Phys., 102, 024911 (2007). DOI: 10.1063/1.2752122
  15. V. Semet, Ch. Adessi, T. Capron, R. Mouton, Vu Thien Binh. Phys. Rev. B, 75, 045430 (2007). DOI: 10.1103/PhysRevB.75.045430
  16. K.L. Jensen. A Thermal-Field-Photoemission, Model and Its Application. In: Modern Developments in Vacuum Electron Sources, TAP, 135, 345 (2020). DOI: 10.1007/978-3-030-47291-7_8
  17. R.G. Forbes. Renewing the Mainstream Theory of Field and Thermal Electron Emission. In: Modern Developments in Vacuum Electron Sources, Springer Nature, ch. 9, 2020. DOI: 10.1007/978-3-030-47291-7_9
  18. A.B. Petrin. J. Exp. Theor. Phys., 109 (2), 314 (2009). DOI: 10.1134/S1063776109080184
  19. A.B. Petrin. J. Exp. Theor. Phys., 124 (6), 854 (2017). DOI: 10.1134/S1063776117050156
  20. K.L. Jensen, M.S. McDonald, M.K. Dhillon, D. Finkenstadt, A. Shabaev, M. Osofsky. J. Vacuum Sci. Technol. B, 40, 022801 (2022). DOI: 10.1116/6.0001656
  21. S.P. Bugaev, E.A. Litvinov, G.A. Mesyats, D.I. Proskurovskii. Sov. Phys. Usp., 18, 51 (1975). DOI: 10.1070/PU1975v018n01ABEH004693
  22. M.V. Davidovich, I.S. Nefedov, O.E. Glukhova, M.M. Slepchenkov. J. Appl. Phys., 130, 204301 (2021). DOI: 10.1063/5.0067763
  23. M.V. Davidovich. Tech. Phys., 67 (9), 1196 (2022)]. DOI: 10.21883/TP.2022.09.54684.257-21
  24. J. Robertson. Mater. Sci. Eng. R, 37, 129 (2002). DOI: 10.1016/S0927-796X(02)00005-0
  25. V.I. Khvesyuk, A.S. Scriabin. High Temperature, 55 (3), 428 (2017). DOI: 10.1134/S0018151X17030129
  26. A.S. Dmitriev, Vvedenie v nanoteplofiziku (BINOM. Laboratoriya znanij, M., 2015) (in Russian)
  27. Y. Dubi, M. Di Ventra. Rev. Mod. Phys., 83 (1), 131 (2011). DOI: 10.1103/RevModPhys.83.131
  28. G. Chen, A. Shakouri. Trans. ASME, 124 (4), 242 (2002). DOI: 10.1115/1.1448331
  29. Y. Ezzahri, K. Joulain, J. Ordonez-Miranda. J. Appl. Phys., 128, 105104 (2020). DOI: 10.1063/5.0017188
  30. D.G. Cahilla, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot. J. Appl. Phys., 93, 793 (2003). DOI: 10.1063/1.1524305
  31. Y.K. Koh, D.G. Cahill, B. Sun. Phys. Rev. B, 90, 205412 (2014). DOI: 10.1103/PhysRevB.90.205412
  32. B. Vermeersch, A. Shakouri. Nonlocality in Microscale Heat Conduction. https://arxiv.org/abs/1412.6555 (2014)
  33. Yu.A. Kruglyak. Nanoelektronika " bottom-up" (Strelbitsky Publishing House, Kiev, 2016) (in Russian)
  34. R. Tsu, L. Esaki. Appl. Phys. Lett., 22 (11), 562 (1973). DOI: 10.1063/1.1654509 (1973)
  35. L.L. Chang, L. Esaki, R. Tsu. Appl. Phys. Lett., 24, 593 (1974). DOI: 10.1063/1.1655067
  36. S.Z. Deng, H.T. Xu, X.G. Zhen, Jun Zhou, Jun Chen, N.S. Xu. Effect of Temperature on Field Emission Properties from Nanoclusters of Tungsten Oxide on Silicon Carbide IEEE/CPMT/SEMI. 28th International Electronics Manufacturing Technology Symposium, 07-11 July 2003, IEEE. DOI: 10.1109/IVMC.2003.1223047
  37. Y. Arakawa, A. Yariv. IEEE J. Quant. Electron., 22 (9), 1887 (1986). DOI: 10.1109/JQE.1986.1073185
  38. E.X. Ping, H.X. Jiang. Phys. Rev. B, 40 (17), 11792 (1989). DOI: 10.1103/PhysRevB.40.11792
  39. O. Pinaud. J. Appl. Phys., 92 (4), 1987 (2002). DOI: 10.1063/1.1494127
  40. L. Esaki. IEEE J. Quant. Electron., 22 (9), 1611 (1986). DOI: 10.1109/JQE.1986.1073162
  41. V.F. Elesin. J. Exp. Theor. Phys., 101, 795 (2005). DOI: 10.1134/1.2149060
  42. V.F. Elesin, Y.V. Kopaev. J. Exp. Theor. Phys., 96, 1149 (2003). DOI: 10.1134/1.1591227
  43. V.F. Elesin. J. Exp. Theor. Phys., 89, 377 (1999). DOI: 10.1134/1.558994
  44. V.F. Elesin. J. Exp. Theor. Phys., 85, 264 (1997). DOI: 10.1134/1.558273
  45. V.F. Elesin. J. Exp. Theor. Phys., 94, 794 (2002). DOI: 10.1134/1.1477905
  46. V.F. Elesin. J. Exp. Theor. Phys., 117, 950 (2013). DOI: 10.1134/S1063776113130104
  47. V.F. Elesin. JETP, 118 (6), 951 (2014). DOI: 10.1134/S1063776114060041
  48. M.V. Davidovich. J. Exp. Theor. Phys. Lett., 110 (7), 472 (2019). DOI: 10.1134/S0370274X19190068
  49. M.V. Davidovich, R.K. Yafarov. Tech. Phys., 63 (2), 274 (2018). DOI: 10.1134/S106378421802010X
  50. M.V. Davidovich, R.K. Yafarov. Tech. Phys., 64 (8), 1210 (2019). DOI: 10.21883/JTF.2019.08.47905.402-18
  51. Yu.A. Chaplygin, V.K. Nevolin, V.A. Petukhov. Dokl. Phys., 56, 1 (2011). DOI: 10.1134/S1028335811010058
  52. J.G. Simmons. J. Appl. Phys., 34, 1793 (1963). DOI: 10.1063/1.1702682

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru