About the interaction of charged spheroidal particles in an electrolyte solution
Grashchenkov S. I 1
1Pskov State University, Pskov, Russia
Email: grasi@mail.ru

PDF
Electrostatic interaction of two charged spheroidal macroparticles in an aqueous solution of a symmetric electrolyte is analyzed within the linearized Poisson-Boltzmann model under the condition of a constant charge on their surfaces.It is assumed that the particles have a common axis of symmetry. Interparticle forces are calculated through finite-element method in the regimes of weak and moderate screening in the absence of external field. Keywords: linearized Poisson-Boltzmann model, two charged microparticles, spheroidal microparticles, colloidal particles, constant charge boundary condition.
  1. J.N. Israelachvili. In: Intermolecular and Surface Forces (Elsevier Science, Netherlands, 2011)
  2. H. Ohshima. Theory of Colloid and Interfacial Electric Phenomena (Academic Press, San Diego, 2006)
  3. B.V. Derjaguin. Trans. Faraday Soc, 35, 203 (1940). DOI: 10.1039/TF9403500203
  4. S.V. Siryk, A. Bendandi, A. Diaspro, W. Rocchia. J. Chem. Phys., 155 (11), 114114 (2021). DOI: 10.1063/5.0056120
  5. I.N. Derbenev, A.V. Filippov, A.J. Stace, E. Besley. Soft Matter., 14 (26), 5480 (2018). DOI: 10.1039/c8sm01068d
  6. S.L. Carnie, D.Y.C. Chan, J. Stankovich. J. Colloid Interface Sci., 165 (1), 116 (1994). DOI: 10.1006/jcis.1994.1212
  7. R. Pericet-Camara, P. Papastavrou, S.H. Behrens, M. Borkovec. J. Phys. Chem. B, 108 (50), 19467 (2004). DOI: 10.1021/jp0473063
  8. G. Toikka, R.A. Hayes. J. Colloid Interface Sci., 191 (1), 102 (1997). DOI: 10.1006/jcis.1997.4950
  9. A.B. Glendinning, W.B. Russel. J. Colloid Interface Sci., 93 (1), 95 (1983). DOI: 10.1016/0021-9797(83)90388-0
  10. P.K. Das, S. Bhattacharjee, W. Moussa. Langmuir, 19 (10), 4162 (2003). DOI: 10.1021/la0207567
  11. E.R.A. Lima, F.W. Tavares, E.C. Biscaia Jr. Phys. Chem. Chem. Phys., 9 (24), 3174 (2007). DOI: 10.1039/B701170A
  12. C.D. Cooper, L.A. Barba. Comp. Phys. Commun., 202, 23 (2016). DOI: 10.1016/j.cpc.2015.12.019
  13. S.I. Grashchenkov. Tech. Phys., 67 (12), 1533 (2022). DOI: 10.21883/TP.2022.12.55186.145-22
  14. M. Holst, N. Baker, F. Wang. J. Comp. Chem., 21 (15), 1319 (2000). DOI: 10.1002/1096-987X(20001130)21:15<1319::AID-JCC1>3.0.CO;2-8
  15. D.V. Belov, S.N. Gorshkov. Uchenye zapiski fiz. fak. Moskovskogo un-ta, 4, 164102 (2016) (in Russian)
  16. L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii. Electrodynamics of Continuous Media (Pergamon, Oxford, 1984)
  17. J.N. Reddy, D.K. Gartling. The Finite Element Method in Heat Transfer and Fluid Dynamics (CRC Press, Boca Raton, 2010)
  18. V.E. Fortov, A.G. Khrapak, S.A. Khrapak, V.I. Molotkov, O.F. Petrov. Phys. Usp., 47 (5), 447 (2004). DOI: 10.1070/PU2004v047n05ABEH001689
  19. S. Zaglmayr. Phd Thesis (Johannes Kepler University, Linz, 2006)
  20. J. Schoberl. C++11 Implementation of Finite Elements in NGSolve, ASC Report 30/2014, Institute for Analysis and Scientific Computing (Vienna University of Technology, Vienna, 2014)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru