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Introduction

When a colloidal particle interacts with an electrolyte

solution, a number of processes occur that lead to the

occurrence of a charge on its surface [1]. In liquid solutions,

a charged particle is surrounded by a diffusive ion layer that

screens the electric potential on its surface. Consideration

of screening in the interaction of charged particles plays an

important role in various technical and biological systems.

The distribution of the ϕ potential in the vicinity of particles

can be searched based on the linearized Poisson-Boltzmann

equation or the Debye−Hückel equation [3] if the electric

field potentials at the considered points of the symmetric

electrolyte are sufficiently small [2]:

1ϕ − k2
Dϕ = 0, (1)

where ϕ — potential distribution in the vicinity of particles,

kD — screening constant (inverse Debye radius). A

typical condition for the applicability of this equation is

the calculation of the potential distribution in a colloidal

system in which the potentials on the surfaces of particles do

not exceed kBT/e, where kB —Boltzmann constant, T —
absolute temperature, e — elementary charge (temperature

25◦C corresponds to potential 26mV) [1,2]. Obviously,

the potential on the surfaces of particles also increases

with the increase of temperature to the value at which the

equation (1) becomes applicable. The presence of a charge

on the surfaces of particles results in the emergence of

electrostatic forces of interaction between them. The forces

of interaction between colloidal particles in symmetrical

ionic solutions have a significant effect on the properties

of biological fluids, pharmaceuticals, food, etc. Therefore, a

large number of papers have been devoted to calculating the

forces of electrostatic interaction between two macroparti-

cles based on equation (1). A fairly complete overview of

such studies is provided in [4]. It should be noted that the

distribution of potentials on the surface of particles depends

on the distance between them, their sizes, velocities, and

the characteristic relaxation time of the surface charge [5],
and the search for such a distribution is a separate problem.

Therefore, the calculation of interaction forces is often

limited to two cases: a constant potential on the surfaces of

particles and a constant charge of particles. Let us consider

in more detail these conditions for the case of particles in

aqueous solutions of a symmetrical electrolyte. In general,

the boundary conditions on the surface of each particle have

the form

ϕ = ϕi ,

(

∇ϕ −
εi

ε
∇ϕi

)

n =
σ

εε0
, (2)

where n —the unit vector of the normal to the surface

element directed into the particle, ε0 —the electric constant,

ε — the dielectric constant of the medium (aqueous elec-

trolyte solution), εi — dielectric constant of the substance

ith particle, ϕi — potential distribution inside ith particle,

σ — surface density charges. As a general rule, the

dielectric constant of an aqueous electrolyte is much greater

than the dielectric constant of a particle substance. In this

case, the impact of the second term in parentheses in the

second condition is usually small and the condition (2) can

be replaced by the condition [6]

n∇ϕ =
σ

εε0
. (3)

It can be assumed with low potentials on the surface of a

particle that the surface charge density depends only on the

surface potential, and this dependence can be represented

as [7]

σ = σ0 + C(ϕ − ϕ0), (4)
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where σ0 — the distribution of the surface charge density

obtained for a solitary particle, provided that at all points

of its surface the potential value ϕ0 is the same, C — a

constant depending on the properties of the particle surface.

We obtain the following substituting (4) in (3).

∇ϕn =
σ0

εε0
+ C

(ϕ − ϕ0)

εε0
.

At C → ∞ on the surface of the particle

ϕ = ϕ0.

This condition is called the constant potential condition.

In this case, the potential distributions on the surface of the

particles do not depend on the distance between them.

At C → 0 on the surface of the particle

∇ϕn =
σ0

εε0
. (5)

This condition is called the constant charge condition. In

this case, the potential distributions on the surface of the

particles depend on the distance between them. When using

this condition, it is necessary to know the distribution of σ0
on the surface of a solitary particle with a homogeneous

potential distribution on this surface. The condition of

constant charge and the condition of constant potential

can be considered as limiting cases that determine the

interval in which the values of the electrostatic repulsion

force of particles can lie. This abovesaid is well illustrated

by the comparison made in [8] of experimental data of

the electrostatic interaction forces of spherical submicron

particles of silicon dioxide in an aqueous electrolyte NaCl

at different salt concentrations with the results of calculation

of these forces using constant charge and constant potential

conditions. Examples of studies in which these conditions

are used as limiting cases are [6,9–12]. Both in the case

of the condition of constant potential and in the case of

constant charge in the studies devoted to the study of

the interaction of two particles based on equation (1), the
interaction of spherical particles is considered, as a rule.

An exception is the study [13], in which the interaction of

spheroidal particles with a common axis of symmetry was

considered for given homogeneous potential distributions on

their surfaces. The purpose of this work is to modify the

method developed in this study for the case of a constant

charge, taking into account the boundary condition (5).

1. Calculation procedure

The finite element method is used in this paper to

study the electrostatic interaction of macroparticles. In

this method the domain, in which the distribution of one

or another quantity is determined, is divided into a set

of subdomains. As a result, a computational grid is

obtained, on the basis of which a set of basis functions

is generated that are used to approximate the desired

distribution. Therefore, the distribution is sought in the form

of expansions into series by these functions with unknown

coefficients. At present, there are a number of computer

programs that allow to use the finite element method to

find a numerical solution of the differential equation by its

weak form. The weak form of the equation (1) is known,

and it can be represented as [14]

∫

�

∼

∇u ·
∼

∇φd
∼

V +

∫

�

k2uφd
∼

V +

∫

ŴN

gNφd
∼

S = 0, (6)

where

u =
ϕ

ϕ0

,

k = kDR1,

gN = n
∼

∇u. (7)

Here and below, the use of a tilde over operators

and quantities expressed by coordinates indicates that the

coordinates are normalized to the characteristic size R1 of

the first particle, which in the case of a spherical particle

is equal to its radius, and in the case of a spheroidal

particle — to the maximum distance from the general

particle symmetry axis to its surface. We assume that

the corresponding distance R2 for the second particle does

not exceed R1. Next ϕ0 —the potential of a solitary

particle, � — the final region in which the potential

distribution is sought, V — the volume of this region, ŴN —
sections of the boundaries of the computational domain that

coincide with the surfaces of particles, φ — test function.

Sequential substitution of test functions into equation (6)
makes it possible to obtain a system of equations for

calculating the above unknown coefficients. In the problem

under consideration in the condition (5) σ0 represents the

distribution of the surface charge density of a single particle

at a surface potential equal to ϕ0. In the case of a

spherical particle, this distribution is homogeneous, and gN

is a constant value. However, in the case of a spheroidal

particle, this is not the case. To find the distribution gN ,

we use the fact that the electric field strength inside the

particle is zero at a constant potential on the surface of

the particle. [15] shows that this condition results in an

unambiguous distribution σ0 for a given total charge of the

particle, coinciding with the distribution on the surface of a

conductive spheroid in vacuum [16]. Using the expression

for the surface charge density from [15,16], taking into

account (5), (7), we obtain that on the surface of the ith
particle

gN =
βi

4π

(R2
i

R2
1

+
∼

ρ
2
( a2

i

R2
i

− 1
))

−
1
2

, (8)

where

βi =
Qi

εε0ϕ0Ri
,

Qi — full charge of ith particle, Ri — maximum distance

from the axis of symmetry of this particle to its surface,
∼

ρ —
normalized value in at the considered point on the surface
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Figure 1. Structure of the initial computational domain.

of a particle of polar radius of a cylindrical coordinate

system, the axis z of which coincides with the general axis

of symmetry of the particles, a i — the distance from the

center of the particle to its surface along the axis connecting

the centers of the particles. If the desired distributions are

axisymmetric, like in this case, then the three-dimensional

problem can be reduced to a two-dimensional problem

by using cylindrical coordinates, in which all distributions

depend only on the polar radius ρ and the applicates z
of the cylindrical coordinate system. This is the approach

used in this paper. An example of the initial computational

grid is shown in Fig. 1. The lower boundary of the domain

corresponds to the axis of symmetry of the problem. For the

convenience of displaying individual elements, the ratio of

their sizes differ from those actually used. The radius of the

outer boundary was assumed to be 100R1 with a distance

hc between the centers of the macroparticles less than 10R1,

and 100hc in the other case. The information necessary for

the transition to a cylindrical coordinate system is given

in [17]. The value βi can be calculated using the finite

element method as described in [13]. The values βi for

some values a i/Ri and k are shown in the table. The values

of βi for the ball are not given, since they can be obtained

using the analytical formula

βi = 4π(1 + kDRi),

which can be easily deduced from the expressions given

in [18]. The same formula was used to estimate the accuracy

of the calculation of βi by the finite element method. It

should be noted that the weak form (6) has an unambiguous

solution, provided that at least a part of the boundary of the

region under consideration has a distribution of u. As such a

boundary, the outer boundary of the computational domain

is chosen and the potential distribution on it is approximated

as a distribution obtained by a superposition of distributions

created by single spherical macroparticles [18], whose

positions coincide with the centers of the particles under

consideration, and the charges coincide with the charges

of the particles under consideration. It should be noted

that for the values of k considered in this paper, without a

noticeable decrease of accuracy, it is possible to simply put

the potential at the outer boundary equal to zero.

Values βi for some values a i/R i and k = kDR i , see (7), (8)

a i/R i kDR i βi

0.5 0.1 11.253

0.5 1 19.0549

2 0.1 18.703

2 1 38.268

The force F acting on some particle can be found using

the expression [6]

F =

∮

S
T · ndS,

where T — stress tensor

T =
(

5 +
1

2
εε0E2

)

I− εε0E⊗ E,

S — body surface area, E = −∇ϕ —electric field strength,

I — unit tensor, 5 — hydrostatic pressure due to the dif-

ference between local and volumetric osmotic pressures [3].
When using the linearized Poisson-Boltzmann theory [3]

5 =
1

2
εε0k2

Dε
2.

The difference between this work and [13] lies in the

additional term with gN in a weak form, which takes

into account the boundary condition (5) on the particle

surface, and in the expression for calculating the force,

which in this work takes into account the hydrostatic

pressure and the heterogeneity of the potential distribution

on the surface particles. Otherwise, the procedure for

calculating the normalized potential distribution u based

on the finite element method coincides with the one

given in [13], and its description is omitted here. Like

in [13], the calculation was performed using the NG-

Solve [19,20] software package. It should be noted that

with a homogeneous distribution of potential on the surface

of the particles, the contribution to the force due to

hydrostatic pressure becomes zero. Therefore, despite the

lack of consideration of this contribution in the expression

for strength in the work of [13], a comparison of the

results of this work with the results of [13] is quite

correct.

Since the finite element method is approximate, when

using it, it is necessary to carry out test calculations

to assess the accuracy of the results obtained. At the

same time, since the accuracy of calculations decreases

with the increase of the distance between the surfaces of

particles [13], it is sufficient to conduct tests for maximum

distances at the values k used in this work. The force F
of electrostatic interaction of spherical macroparticles tends

to the repulsive force FDLVO with an increase of the
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distance h between the surfaces of spherical macroparti-

cles as described by the well-known asymptotic expres-

sion [1,5] for particles with a constant charge, which

in the notation the present work can be written as

follows

FDLVO = F04π
R2

R1

1 +
∼

hck
∼

h
2

c

exp(−k
∼

h), (9)

where

F0 = εε0ϕ
2
0 .

Here
∼

h — normalized to R1 — minimum distance

between particle surfaces. For identical particles at h = 5R1

and k = 1, i.e. for the case when the radii of the particles

are equal to the Debye radius k−1
D , the difference between

the force modules acting on spherical macroparticles from

FDLVO was 0.001%. In the case when the radius of

the second particle was two times smaller than the first,

this difference was 0.03%. For h = 10R1 and k = 0.1,

i.e. when the particle radii are ten times smaller than

Debye radius, these differences were 0.07 and 0.0002%,

respectively. To illustrate the above, Fig. 2 shows the

dependences of the normalized repulsive forces acting on

identical spherical particles from the distance between their

surfaces normalized by the Debye radius k−1
D at k = 1.

For comparison, the dependences calculated according to

the condition of charge constancy, potential constancy

and dependence calculated according to the asymptotic

formula (9) are shown. It can be seen from the figure that as

the distance between the particles increases, the calculated

values of the forces in all three cases tend to each other, and

starting from a certain distance, the corresponding curves

practically merge. Figure 3 shows similar dependencies for

the case k = 0.1. A comparison of the dependencies shown

in Fig. 2 and 3 shows that for a given distance between

particles, an increase of k (or an increase of the radius
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Figure 2. Dependence of the normalized force on the normalized

distance between the surfaces of identical spherical particles at

k = 1: solid line — particles with a constant charge; dash-dotted

line — calculation according to the asymptotic formula (5); dashed
line — particles with a constant potential on their surfaces.
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Figure 3. Dependence of the normalized force on the normalized

distance between the surfaces of identical spherical particles at

k = 0.1: solid line — particles with a constant charge; dash-dotted

line — calculation according to the asymptotic formula (5); dashed
line — particles with a constant potential on their surfaces.

of particles at a given value of the Debye radius) results

in an increase of the values of normalized forces, which

is easily explained by an increase of normalized charges

and a decrease of the distance normalized by the radius of

particles
∼

h.

2. Calculation results

Figure 4 shows the dependences on the distance between

particles of the normalized interaction force of a spherical

particle with particles of various shapes or sizes at k = 1.

This figure shows that, with sufficient proximity of the

radius of the spherical particle to the Debye radius k−1
D ,

an increase of the longitudinal dimensions of the second

particle or a decrease of its transverse dimensions results

in a decrease of the forces of electrostatic repulsion of

the particles. However, as can be seen from Fig. 5, if

the particle sizes are not large enough, then, starting from

a certain distance between the surfaces of the particles,

an increase of the longitudinal dimensions of the second

particle results in an increase of the force of interaction

between the particles. The described patterns are also

fulfilled for particles of the same shapes, which is well

illustrated in Fig. 6. Figure 7 shows in more detail the

dependences of forces on the distance between particles

of the same shapes at k = 0.1 in the range hkD from

0.25 to 0.28. This figure shows that with sufficiently

small particle sizes a situation is possible at some distances

between them, when both a decrease and an increase of

the longitudinal size of the particles results in a decrease of

the normalized forces of their interaction. These patterns

correspond to the patterns obtained in the work [13] for

particles with constant potential on their surfaces. Moreover,

a comparison with the results of [13] shows that, as in

the case of spherical particles, the normalized forces acting
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Figure 4. Dependence of the normalized force on the normalized

distance between the surfaces of particles with constant charges

at k = 1 and R1 = a1 : dotted line — R2 = R1, a2 = 0.5R2; solid

line — R2 = R1, R2 = a2; dashed line — R2 = R1, a2 = 2R2; long

strokes — R2 = 0.5R1, a2 = R2; dash-dotted line — R2 = 0.5R1,

a2 = 2R2.
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Figure 5. Dependence of the normalized force on the normalized

distance between the surfaces of particles with constant charges at

k = 0.1 and R1 = a1 : dotted line — R2 = R1, a2 = 0.5R2; solid

line — R2 = R1, R2 = a2; dash-dotted line — R2 = R1, a2 = 2R2;

long strokes — R2 = 0.5R1, a2 = R2; dashed line — R2 = 0.5R1,

a2 = 2R2.

on particles with a constant charge of a spheroidal shape

tend to normalize forces acting on particles with a constant

potential as the distance between the particles increases.

In this case, the forces acting on particles with a constant

charge are greater than the forces acting on particles with a

constant potential, and differ in order of magnitude at close

distances.

Conclusion

The electrostatic interaction of two charged spheroidal

macroparticles with a common axis of symmetry and a

constant charge on their surfaces under conditions of weak

and moderate screening is considered. The calculation

hkD
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Figure 6. Dependences of the normalized force on the

normalized distance between surfaces of identical particles with

constant charges: dotted line — k = 1, a1 = a2 = 0.5R1; solid

line line — k = 1, a1 = a2 = 2R1; dash-dotted line — k = 0.1,

a1 = a2 = 0.5R1; dashed line — k = 0.1, a1 = a2 = 2R1.
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Figure 7. Dependence of the normalized force on the normalized

distance between surfaces of identical particles with constant

charges at k = 0.1: solid line — a1 = a2 = R1; dash-dotted line —
a1 = a2 = 0.5R1; dashed line — a1 = a2 = 2R1.

results are applicable for cases when the dielectric constant

of the electrolyte is much greater than the dielectric constant

of the particle substance, and the electric field potentials on

the surface of the particles are quite small compared to

the energy of their thermal motion. The normalized forces

acting on particles with a constant charge are compared

with the forces acting on particles with a constant potential

on their surfaces. It is shown that the transition from

the condition of constancy of potentials to the condition

of constancy of charges results in a multiple increase of

the values of forces for closely spaced particles. It follows

from the calculation results that, with a sufficiently large

degree of particle shielding, an increase of their longitudinal

dimensions results in a decrease of the forces of electrostatic

interaction between them. However, if the degree of

shielding is not small enough, then the dependence of the

force on the transverse dimensions of the particles depends

on the distance between them. In this case, a situation

Technical Physics, 2024, Vol. 69, No. 1
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is possible when the interaction force between spherical

macroparticles will be greater than the interaction forces

of particles both in the form of an oblate spheroid and in

the form of elongated spheroid.
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