О взаимодействии заряженных сфероидальных частиц в растворе электролита
Гращенков С.И.
11Псковский государственный университет, Псков, Россия
Email: grasi@mail.ru
Поступила в редакцию: 27 июня 2023 г.
В окончательной редакции: 29 октября 2023 г.
Принята к печати: 15 ноября 2023 г.
Выставление онлайн: 25 декабря 2023 г.
На основе линеаризованной модели уравнения Пуассона-Больцмана рассмотрено электростатическое взаимодействие заряженных сфероидальных частиц в водном растворе симметричного электролита при условии постоянства заряда на их поверхностях. Полагается, что частицы имеют общую ось симметрии. Методом конечных элементов проведены расчеты сил взаимодействия между частицами в режиме слабого и умеренного экранирования в отсутствие внешнего поля. Ключевые слова: линеаризованная модель Пуассона-Больцмана, две заряженные микрочастицы, сфероидальные микрочастицы, коллоидные частицы, граничное условие постоянства заряда.
- J.N. Israelachvili. In: Intermolecular and Surface Forces (Elsevier Science, Netherlands, 2011)
- H. Ohshima. Theory of Colloid and Interfacial Electric Phenomena (Academic Press, San Diego, 2006)
- B.V. Derjaguin. Trans. Faraday Soc, 35, 203 (1940). DOI: 10.1039/TF9403500203
- S.V. Siryk, A. Bendandi, A. Diaspro, W. Rocchia. J. Chem. Phys., 155 (11), 114114 (2021). DOI: 10.1063/5.0056120
- I.N. Derbenev, A.V. Filippov, A.J. Stace, E. Besley. Soft Matter., 14 (26), 5480 (2018). DOI: 10.1039/c8sm01068d
- S.L. Carnie, D.Y.C. Chan, J. Stankovich. J. Colloid Interface Sci., 165 (1), 116 (1994). DOI: 10.1006/jcis.1994.1212
- R. Pericet-Camara, P. Papastavrou, S.H. Behrens, M. Borkovec. J. Phys. Chem. B, 108 (50), 19467 (2004). DOI: 10.1021/jp0473063
- G. Toikka, R.A. Hayes. J. Colloid Interface Sci., 191 (1), 102 (1997). DOI: 10.1006/jcis.1997.4950
- A.B. Glendinning, W.B. Russel. J. Colloid Interface Sci., 93 (1), 95 (1983). DOI: 10.1016/0021-9797(83)90388-0
- P.K. Das, S. Bhattacharjee, W. Moussa. Langmuir, 19 (10), 4162 (2003). DOI: 10.1021/la0207567
- E.R.A. Lima, F.W. Tavares, E.C. Biscaia Jr. Phys. Chem. Chem. Phys., 9 (24), 3174 (2007). DOI: 10.1039/B701170A
- C.D. Cooper, L.A. Barba. Comp. Phys. Commun., 202, 23 (2016). DOI: 10.1016/j.cpc.2015.12.019
- С.И. Гращенков. ЖТФ, 92 (12), 1770 (2022). DOI: 10.21883/JTF.2022.12.53742.145-22 [S.I. Grashchenkov. Tech. Phys., 67 (12), 1533 (2022). DOI: 10.21883/TP.2022.12.55186.145-22]
- M. Holst, N. Baker, F. Wang. J. Comp. Chem., 21 (15), 1319 (2000). DOI: 10.1002/1096-987X(20001130)21:15<1319::AID-JCC1>3.0.CO;2-8
- Д.В. Белов, С.Н. Горшков. Ученые записки физ. фак. Московского ун-та, 4, 164102 (2016)
- Л.Д. Ландау, Е.М. Лифшиц. Электродинамика сплошных сред (Физматлит, М., 2005), 4-е изд., стереот. [L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii. Electrodynamics of Continuous Media (Pergamon, Oxford, 1984)]
- J.N. Reddy, D.K. Gartling. The Finite Element Method in Heat Transfer and Fluid Dynamics (CRC Press, Boca Raton, 2010)
- В.Е. Фортов, А.Г. Храпак, С.А. Храпак, В.И. Молотков, О.Ф. Петров. УФН, 174 (5), 495 (2004). DOI: 10.3367/UFNr.0174.200405b.0495 [V.E. Fortov, A.G. Khrapak, S.A. Khrapak, V.I. Molotkov, O.F. Petrov. Phys. Usp., 47 (5), 447 (2004). DOI: 10.1070/PU2004v047n05ABEH001689]
- S. Zaglmayr. Phd Thesis (Johannes Kepler University, Linz, 2006)
- J. Schoberl. C++11 Implementation of Finite Elements in NGSolve, ASC Report 30/2014, Institute for Analysis and Scientific Computing (Vienna University of Technology, Vienna, 2014)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.