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Thermal-field emission in nanostructures with resonant tunneling
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A model of thermal field emission in nanostructures with several barriers and potential wells between them is

presented, based on a strict definition of the shape of the quantum potential and a strict solution of the Schrodinger

equation, taking into account the thermal balance and the influence of spatial charge. Vacuum and semiconductor

resonant tunneling diode and triode structures with two, three or more electrodes are considered. A formula is

given for correcting the quantum potential due to the influence of spatial charge. In general, it is necessary to

consider two-way tunneling and heating of electrodes with different temperatures due to current flow. Conditions
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be neglected. The approach can be extended to the non-stationary case.
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Introduction

An emission current is generated when external fields are

applied to conductors. The thermoelectronic emission [1–
3] and field (autoelectronic) emission [1,4–8] are usually

considered separately. The second type of emission is

characterized by the fact that the temperature in the

Fermi−Dirac (FD) distribution

f FD =
[

1 + exp
(

(E − µc)/(kBT )
)]−1

is assumed to be zero. This works well up to room

temperatures of kBT ∼ 0.026 eV. The current density from

the cathode to the anode with the anode voltage Ua in this

approximation is

J+(Ua) =
−eme

2π2~3

µc
∫

0

D+(E,Ua)(µc − E)dE. (1)

Next, all values corresponding to the cathode are denoted

by the index
”
c“, the values corresponding to the anode are

denoted by the index
”
a“, the values corresponding to the

grid are denoted by the index
”
g“. There is consistency

between the concepts of cathode and source, as well

as anode and drain in case of solid-state nanostructures.

Thermal emission is characterized by relatively small fields

and high (on the order of 1000−2000K) temperatures. A

number of papers [8–20] addressed the general thermal-field

emission, but only from the cathode, while the shape of the

potential function and the strict solution of the Schrodinger

equation (SE), as a rule, were not taken into account.

Taking this into account is important for nanostructures,

and it is also important to address the two-way tunneling

and different temperatures of the cathode and anode, which

is the purpose of this study. Moreover, the impact of the

spatial charge on the change in the quantum potential is

important, which is not considered in this paper. Taking

into account thermal field emission is also important for

emitters with points [18–21], for which the heating can be

strong, heterogeneous and may lead to explosive emission.

We will consider diode structures, as well as triode

structures (Fig. 1) with single or double grids at the

same grid electrostatic potential Ug and quantum po-

tential Vg = −eUg + EFc . Accordingly, for the anode

Va = −eUa + EFc . Formally, it can be assumed that

the Fermi energy (FE) slightly increases at room tem-

perature because of thermal broadening from EFc = µc

to EFc = µc + kBT , and then current density can be
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Figure 1. Resonant tunnelling structure circuit in the form of

a cathode 1, dielectric layers 2, anode 3, power supply 4, grid

electrodes 5 and thermostats 6.
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determined as

J+(Ua) =
−eme

2π2~3

µe+kBT
∫

0

D+(E,Ua)(µc + kBT − E)dE.

The current density from the anode to the cathode is

given by the same (1) formula

J−(Ua) =
−eme

2π2~3

µa
∫

0

D−(E,Ua)(µa − E)dE. (2)

The electrochemical potentials µc = EFc , µa = EFc−eUa

and penetrability D± are introduced into the formulas.

The total current density is J(Ua) = J+(Ua)−J−(Ua). The

charge of the electron here is qe = −e, and its mass is me .

We have J−(Ua) = 0 at eUa ≥ EFa , since there are no levels

at the cathode for tunneling electrons from the anode. In

this case, it is convenient to count the energy from the

bottom of the cathode conduction band. Some electrons

can tunnel from the anode at eUa < EFa , and in this case it

is convenient to count energy from the lower bottom of the

anode conduction band. The energy of the electrons at the

cathode increases by eUa . The energy is counted from the

bottom of the cathode conduction band in ratios (1), (2), the
values D+(E,Ua) and D−(E,Ua) characterize the penetra-

bility (transmittance) of the barrier. Further, barrier means

any distribution of the quantum potential V (x) included in

the SE. At eUa ≥ 1 the eV barrier is strongly asymmetric,

and it can be assumed that |D+(E,Ua)| ≫ |D−(E,Ua)|.
In this case, the total current density is J(Ua) ≈ J+(Ua). In
the case of an arbitrary temperature, the density of electrons

with energy E = p2
z /(2me) = meν

2
z /2 incident per second

per unit cathode surface at z = 0 is ([1], formula 4.27)

dn+
E =

mekBT
2π2~3

ln

(

1 + exp

(

µc − E
kBT

))

dE = A(E)dE.

(3)
This formula is obtained taking into account the dis-

tribution of FD and integration over all contributions

(p2
x + p2

y)/(2me), corresponding to the transverse pulses of

incoming electrons. The chemical potential at the cathode

is FE in (3): µc = EFc . µc → µa = EFa−eUa needs to be

replaced on anode in distribution (3). Using (3), we obtain

J(Ua , Tc , Ta) = J+(Ua , Tc)−J−(Ua , Ta) and

J+(Ua , Tc) =
−emekBTc

2π2~3

∞
∫

0

D+(E,Ua)

× ln

(

1 + exp

(

µc − E
kBTc

))

dE, (4)

J−(Ua , Ta) =
−emekBTa

2π2~3

∞
∫

0

D−(E,Ua)

× ln

(

1 + exp

(

µa − E
kBTa

))

dE. (5)

These are the basic equations of thermal field emis-

sion (TFE). Obviously, we obtain (1) and (2) from

them with Tc,a → 0. Thermal emission is obtained in

the approximation kBTc ∼ 0.2 eV, E ≥ EFc + Wc , Ta = 0

and D+(E,Ua) = 1−|R̃|2 ≈ 1. Here |R̃|2 — the average

power reflection coefficient from the over-barrier passage.

At the same time, field emission (area 0 < E < EFc + Wc)
is ignored, since D+(E,Ua) ≪ 1 at low voltages. eUa ≪ Wc

is required for this purpose, i.e. eUq ∼ kBTc . In this

case, the accelerating electrode is usually located far

enough away, so that the resulting barrier is wide enough

and almost rectangular with a height of Wc above the

Fermi level (FL) EFc . The coefficient R̃ is located as a

reflection from the step Wc when passing over it. The

current density in this approximation is given by the

Richardson equation JT = −A0T 2 exp
(

−Wc/(kBTc)
)

, where

A0 = 25π4meek2
B/~

3 — Sommerfeld thermoelectronic con-

stant. It should be noted that if for field emission in (1)
we put D+ = 1 for all energies, then for the maximum

density at Wc = 4 eV, EF = 14.6 (beryllium) we have

(at T = 1500K)

Jmax

JT
=

E2
Fc

27π6(kBT )2
exp

(

Wc

kBTc

)

≈ 4 · 107.

The maximum unattainable current density

1015−1016 A/m2 is given by the expression

Jmax = emeE2
Fc
/(4π2

~
3) [1] and corresponds to the hypo-

thetical case when all outgoing electrons pass the barrier. It

is unattainable due to its quantum properties. Theoretically,

a current density of 2−3 of the order lower than [22,23]
is achievable in resonant tunneling (RT) nanostructures,

since the condition of full transmission is achieved for some

energies. The electrodes are strongly heated due to the

release of Joule heat at such a current density. The cathode

is also heated due to the Nottingham effect. its contribution

is significant at RT from levels significantly below FL. The

anode is heated by Joule heat and the release of energy eUa

by each electron. The cathode is cooled due to thermal

emission. Therefore, high-precision RT nanostructures

are characterized by the fact that the cathode and anode

temperatures can be different and quite large, i.e. TFE

should be taken into account. This is especially typical

for vacuum resonant tunneling structures (RTS). In this

respect, quantum RT nanostructures are very different from

incandescent thermal cathodes with TFE, because their

temperatures are determined by the processes of current

flow, i.e. they can vary in time and space. Moreover,

the use of incandescent cathodes implies that the anode

is cold (heat is released in the collector), and the anode

voltage is high enough, so that emission from the cathode

is considered only. Fig. 1 shows a typical RT nanostructure.

The dielectric layers 2 in RT nanostructure can be made

of various dielectrics, or RT nanostructures may have no

dielectic layers. CVD (chemical vapor deposition) diamond

films with a high content of the diamond phase of carbon

(s p3-hybridized atoms) are the most suitable [24]. Films
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in the form of graphite nanoclusters can be deposited as

conductive layers, n-layered graphene or other conductive

films can be used. Heterostructures based on GaAs

technology are most often used for RT diodes and quantum

cascade lasers — GaxAl1−xAs. The RT structure (Fig. 1)
corresponds to three quantum wells of the same depth. It is

possible to consider RTS with one, two and three wells. It

is necessary to increase the electron free path length (FPL)
since RT needs ballistic transport in case of a large number

of layers, which requires the reduction of the temperature.

It is difficult to use cryogenic temperatures, therefore, it is

really possible to obtain from three to seven layers if the

length of the entire structure does not exceed 10 nm.

The purpose of this work is the calculation of TFE at

arbitrary temperatures of the cathode Tc and the anode Ta

in nanostructures with dielectric and conductive layers, as

well as in the case of vacuum gaps between grids using

an accurate quantum potential and based on an accurate

solution of SE. The aim is also to obtain a thermal balance

and estimate the temperature of the electrodes in a high-

current density RTS. We use a number of approximations

since this task is very difficult for nanostructures, especially

in terms of thermal conductivity [25–33]. The basic

assumption is equilibrium and stationarity. The temperature

distribution is sought within the framework of this model.

The second assumption is that the size of the transit section

”
cathode boundary−anode boundary“ (Fig. 1) is less than

the free path length. This is the main requirement for

emission electronics supporting ballistic transport. There

is no heat release in this region, and it all occurs on the

electrodes — anode and cathode at their free path lengths

(i.e. at lengths of the order of tens of nanometers). The

size of the cathode and anode is significantly larger —
several hundred nanometers, i.e. there is diffusion transport,

and there is heat release in the form of Joule heat. Such

relatively small sizes of the cathode and anode are taken

for increasing the temperature gradient and increasing

the outflow of heat into the thermostats. This made it

possible to use a linear temperature distribution and obtain

relatively low temperatures at high current densities. In

reality, such a linear temperature is determined at lengths

of the order of several free path lengths. Fourier’s law

may be somewhat violated with such large gradients, i.e.,

the heat flow may depend on temperature and size, as

well as be proportional to some degree of temperature.

Nevertheless, we consider phonon transport to be diffusive,

consider the linear equation of thermal conductivity and use

tabular values of thermal conductivity coefficients. This

suggests that the results obtained should be considered

qualitative. Otherwise, it would be necessary to solve

the heat equation taking into account nonlinear effects, if

necessary, to determine the parameters included in it, and

the heat balance model would be very complex and difficult

to solve.

The cases of a triode with one and two grids, as well

as the case of a diode, are considered. RTS may contain

vacuum gaps instead of dielectric layers in a special case.

There is no ballistic thermal conductivity in this case. It

should be noted that there are a number of works where

the TFE is considered to one degree or another [8–20]. In
particular, the emission from points is considered [19,20].
However, the general equations (4), (5) were not considered
for bilateral emission. The quantum potential with the exact

solution of SE was also not accurately taken into account.

The application of the formula (4) is considered in [11]
(see also [12–16]), i.e. it was believed that D−(E,Ua) = 0.

However, the formula (5) should be taken into account for

RTS, in the case when the resonant level falls into the region

of electron energies at the anode and D−(E,Ua) = 1. This

does not take place if eUa > EFc and the anode temperature

is close to zero. However, there are electrons of all energies

on it at the final temperature of the anode. Moreover, (5)
should be taken into account in structures with low anode

voltage, which can be realized in solid-state heterostructures

used in RT diodes and transistors.

1. Thermal balance in quantum
heterostructures

Thermal emission uses heated incandescent cathodes at

relatively low anode voltages, when field emission can be

ignored. These voltages are such that the field at the cathode

is significantly lower than 107 V/cm — the threshold level

when field emission (FE) begins to manifest itself. These

voltages are on the order of fractions of V in case of

nanoscale structures. Further beam acceleration is achieved

by a second anode in the case of electron guns. High

current densities can be achieved in case of FE, at which

significant cathode heating occurs resulting in TFE. High

tunnel current densities are typical for RTS. An additional

strong cathode heating occurs due to the Nottingham effect

in case of tunneling through resonant levels well below FL.

This requires taking into account TFE. RTS with two,

three or more electrodes (Fig. 1) are currently among

the most promising for the development of high-frequency

electromagnetic ranges, including THz and IR ranges

jcite33-48, and also as FE high-current sources [22,23].
At the same time, it is necessary to consider RT for the

analysis of resonant tunneling diodes, transistors, quantum

cascade lasers on the Stark ladder and similar structures.

The specific feature of RT is an increase of the emission

current by several orders of magnitude compared with

tunneling through a single barrier. A single barrier is typical

for a conventional diode structure with a vacuum in the

cathode−anode space, or when this space is filled with

a homogeneous dielectric. In the latter case, the barrier

decreases by ε times at a multiple of dielectric permittivity

(DP). Such a decrease of the barrier can also result in an

increase of current by several orders of magnitude. It is

necessary to consistently solve the SE, Poisson’s equation

(PE) and Fourier thermal conductivity equation for strict

modeling of RTS in the case of a high current density (and,
accordingly, a spatial charge). Fourier thermal conductivity
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equation may be omitted for nanostructures because of the

ballistic transport of phonons. The thermal conductivity

coefficient is usually changed in this case. The radiation heat

transfer should be taken into account in RTS with vacuum

gaps at high electrode temperatures. The thermophysics of

nanostructures is very complex [25–32]. Estimates show

a small contribution of radiative heat transfer, especially in

case of close cathode and anode temperatures, which is

quite possible in case of usage of approximate estimates

(see table). Further, we do not consider heat release in

layers, since the transport of electrons and phonons is

almost ballistic, and the corresponding heat release occurs

on the FPL of electrons and phonons at the cathode and

anode. Heat is released on the electron FPL from the

Nottingham effect, as well as from hot electrons hitting the

anode. The Nottingham effect heats up the electron-emitting

electrode, while the thermal radiation of the electrons cools

them. Therefore, the thermal balance is very difficult even

in steady-state mode, when the surface temperatures of

the electrodes are determined. In reality, the temperature

distribution in nanostructures should be considered. We

will consider nanostructures (Fig. 1) located on massive

thermostats at room temperature T0, while for simplicity

we assume that the temperatures of the cathode and anode

are distributed linearly depending on the coordinate x . In

this case, there is no need to solve the Fourier thermal

conductivity equation, and it is very easy to obtain a thermal

balance, as well as a temperature distribution. The most

common case are really linear or close to linear temperature

distributions. Next, we consider the transverse dimensions

to be significantly superior to the longitudinal ones, i.e.

we use one-dimensional equations. These one-dimensional

equations can be written respectively as follows in the case

of one-dimensional stationary tunneling

(

−~
2∂2x
2me

+ V (x) − E

)

9(x , E, T ) = 0, (6)

∂2x U(z ) =
e|9(x , E, T )|2

ε0ε(z )
, (7)

Dependence of cathode surface temperatures Tc and an-

ode Ta on length l = lc = la nm (electrode material — copper,

T0 = 300K)

Density Temperature- Length l, nm

current J, A/m2 tour, K
80 160 240 320 400 480

7.5 · 1011
Tc 551 834 1150 1498 1879 2292

Ta 668 1070 1504 1970 2468 2999

5.2 · 1011
Tc 570 856 1157 1474 1805 2152

Ta 475 666 872 1093 1329 1581

8.1 · 1011
Tc 731 1199 1703 2244 2822 3436

Ta 562 862 1198 1570 1978 2425

−α2(x)∂2z (T )(x) = −
(

κ(x)

c p(x)ρ(x)

)

∂2x T (x) = f (x , T )

=
F(x , T )

c p(x)ρm(x)
. (8)

Here, the electrostatic potential U is related to the quan-

tum potential V by the ratio V (x) = V0(x)−eU(x)−exUa/d,
where V0(x) is the part of the quantum potential associated

with the action of the structure (electrodes) during the

movement of a point electron, −eU(x)part of the quantum

potential associated with the action of spatial charge

on this electron, and −exUa/d part of the quantum

potential associated with the electrostatic potential in the

cathode−anode flat structure. The potential V0(x) is based

on multiple images. The singular term associated with the

divergence of the Green’s function (GF) is thrown out of

it, since the electron does not act on itself. Essentially,

V0(x) (with precision up to multiplier) is an electrostatic

GF of an electron in a structure with a removed singular

part. Its form is shown below. We wrote the Fourier

thermal conductivity equation (8) in a non-stationary

form, since the temperature during tunneling can be a

slow function of time. The following coefficients are

introduced in it: α — thermometric conductivity coefficient,

κ(x) — thermal conductivity coefficient, c p(x) — heat

capacity coefficient at constant pressure, ρ(x) — density

coefficient. Further, for simplicity, we will assume that

all coefficients are constant (at least piecewise constant).
Stationary (steady-state) processes in the case of tunneling

should actually be considered quasi-steady-state and slowly

changing. Accordingly, in SE (6)

i~∂t9(x , t, T ) = Ê9(x , t, T ) =
[

V (x , t, T ) − ~
2∂2x /(2me)

]

×9(x , t, T ),

PE (7) is already stationary, not a wave equation (the
term ∂2t is omitted, and the vector potential is also not

considered), since the potential changes very slowly in

it, like in SE. The charge density ρe = −e|9(z , E, T )|2,
generally speaking, slowly depends on time. If the

operator ∂t is omitted in Fourier thermal conductivity

equation, then slow thermal processes close to steady-state

processes are considered. It is necessary to determine the

density of thermal sources F for solving the problem which

strongly depends on the nature of tunneling. Therefore,

each electron that tunnels from the level because of the

Nottingham effect in case of RT, gives energy EFc−E to

the cathode region with a size of the order of FPL λ. We

obtain the corresponding density of heat sources using (3).

FN(E, Tc ,Ua) =
mekBTc

2π2~3λ
D+(E,Ua)(EFc − E)

× ln

(

1 + exp

(

µc − E
kBTc

))

dE, (9)

that is evenly distributed over the FPL in the region

−λ < x < 0. The total linear density should be obtained by
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integrating and multiplying by the cathode cross-sectional

area S, which is considered large for the 1D-model

(S ≫ d2, S ≫ l2c,a ):

FN(Tc,Ua) = S

EFc
∫

0

FN(E, Tc,Ua)dE. (10)

Here lc and la — the lengths of the cathode and anode,

which for nanostructures are considered small (on the order

of hundreds of nanometers), and the cathode and anode

are considered to be located on massive thermostats at a

temperature of T0. Stationary solutions can be found in

this case and the surface temperature of the cathode Tc

and the anode Ta can be determined. The emission and

thermal balance depend on them. The conduction current

and tunnel current are continuous. We have a heat release

density per unit cathode length due to Joule current heating

FD(Tc,Ua) = σ−1S J2(Tc ,Ua), (11)

where σ — specific conductivity. Similar sources should be

introduced at the anode. In addition, at Tc > 0 there are

high-energy electrons E > EFc that fall on the anode and

give it energy E + eUa over a length of λ. Therefore

FT c(Tc,Ua) =
mekBTcS
2π2~3λ

∞
∫

EFc

D+(E,Ua)(E + eUa)

× ln

(

1 + exp

(

µc − E
kBTc

))

dE. (12)

The ratio (3) is used in (12) and in (9). Sources

attributable to the tunneling from the anode should also

be considered. Thermal electrons passing over the barrier

from the anode heat up the cathode, and the same electrons

from the cathode cool it. These relations define a very

complex nonlinear model, especially in the nonstationary

case. The model can be simplified as follows. All

parameters in (6)−(10) of the type of thermal conductivity,

density, and specific conductivity coefficient are considered

to be constant and not dependent of temperature. The

model is considered to be stationary. We also consider

eUa ≥ EFc , i.e. there is no RT from the anode, and the

reverse current is small and can be neglected. We also

consider a vacuum structure of size d, i.e. assume ε = 1.

Only radiative heat transfer from the cathode to the anode

is possible through vacuum gaps and it is usually small.

Estimates show that it is small in case of a temperature

difference of up to 1000 K. We neglect it. Ballistic transport

of phonons is also possible. It is proportional to the

temperature difference of the anode and cathode and helps

to equalize these temperatures. It is necessary to know

the appropriate effective coefficient of thermal conductivity

for determination of ballistic transport of phonon and then

it is quite simple to take it into account. Estimates show

(see table) that the cathode and anode temperatures do

not differ much, so this flux is small. This factoring is not

necessary in case of the vacuum in the gaps between the

grid electrodes. We assume that the cathode and anode

are located on a massive thermostat with a temperature

of T0. This means that the area of the thermostat S0 on

which the cathode is stirred should satisfy the condition

S0 ≫ S. In the case of solid-state RTS, we assume that the

structure between the anode and cathode contains dielectric

and metallic nanoscale layers (Fig. 1) with a total length

of d ≪ λ. This means ballistic electronic transport without

heat generation and ballistic phonon heat transfer [26–33].
Accordingly, there is no grid current and heat dissipation

on the grids. If we consider diamond layers, then their

ballistic thermal conductivity is very high, as well as for

thin carbon conductive layers. In this case, the temperature

of the cathode and anode can be considered approximately

the same, which simplifies the task. In this case, the thermal

current from the cathode is greater than the thermal current

from the anode because of the potential difference. Ballistic

transport of electrons and phonons does not result in the

heat release in the RTS [26–33]. High ballistic thermal

conductivity results in an equalization of the temperatures

of the cathode and anode surfaces, while the heat is

generated because of the phonon transfer on an electrode

with higher temperature. In this case it is necessary to use

a grid material with an acoustic impedance close to the

acoustic impedance of a diamond, i.e. reduce the Kapitza

thermal resistance at the boundaries [25,26]. It is advisable
to use nanoscale metal grids for this purpose. There is

only radiation transfer from a hotter surface to a less

hot surface in vacuum RTS with
”
weighted“ grids, and

their temperatures may differ more strongly than for solid-

state RTS. In this case, graphene-CNT grid structures are

convenient [22].
For simplicity, it is convenient to assume that the

temperature between the thermostats and the surfaces is

distributed linearly. This distribution satisfies the Fourier

thermal conductivity equation. It can be used for a

simple calculation of the heat fluxes and determination

of the heat balance. The best structures (Fig. 1) can

be graphite or n-layered graphene electrodes separated

by diamond layers. Crystalline diamond has a dielectric

constant of ε = 5.6 and a very high thermal conductivity

coefficient of 1001−2600W/(m · K). Therefore, the ballistic

coefficient of thermal conductivity should be high. It is

technologically convenient to produce heterostructures in

the form of amorphous CVD diamond and well-conducting

glass carbon or nanocrystalline graphite [49,50]. In the first

case, the structure contains predominantly s p3-hybridized

carbon atoms, and in the second case it contains s p2

carbon atoms. Polycrystalline diamond films produced by

magnetron sputtering from low-pressure plasma can also be

used. Anode cooling is possible in case of RT at anode

levels (eUa < EFc). The heat dissipation at the anode

increases with an increase of the anode voltage, and the

anode can be heated more strongly than the cathode. This

will always be the case for a non-resonant diode structure

3 Technical Physics, 2024, Vol. 69, No. 1
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at high voltage. Electrons fly through the anode without

scattering in case of field vacuum sources of electronic

devices, and they are further accelerated by a second anode

and are usually absorbed in a massive collector. If the

cathode and anode are made of the same material, then

each of the tunneling electrons releases energy EFc−E at

the cathode and gives energy eUa−EFc + E to the anode.

If thermal electrons pass the barrier above FL, then the

energy E−EFc is taken away from the cathode, and these

electrons cool the cathode. Also, both absorption and

heat generation are possible at the anode. Note that

these processes occur due to electrons entering or leaving

the electrodes due to the conduction current, which is

closed through the power supply. The conduction current

is generated in the metal by electrons with FE. The

electronic temperature at the cathode and at the anode

is different, but with this movement, the temperatures

equalize.

Let’s consider the balance of thermal energy. Heat flow

from the anode to the cathode κdS(Ta−Tc)/d . Here κd —

the diffusion coefficient of thermal conductivity. Heat flow

from the cathode to the thermostat κcS(Tc−T0)/lc . Heat

flow from the anode to the thermostat κa S(Ta−T0)/la . The

simplest model is obtained if we take the materials and

lengths of the cathode lc and the anode la the same.

λ = 39 nm for copper at T = 300K. A large temperature

gradient is created on such a nanoscale cathode, which

contributes to the removal of heat into the thermostat. In

reality, the lengths can be on the order of several FPL. We

have the following for the balance at the cathode

κc(Tc − T0)

lc
− κd(Ta − Tc)

d

=
FN(Tc,Ua) + FD(Tc,Ua) − FTc(Tc ,Ua)

S
= F̃c(Tc ,Ua).

(13)

Similarly for the balance on the anode

κa(Ta − T0)

la
+
κd(Ta − Tc)

d

=
FN(Ta ,Ua) + FD(Ta ,Ua) − FTa(Ta ,Ua)

S
= F̃a(Ta ,Ua).

(14)

The right-hand sides (13) and (14) do not depend on S,
and the equations themselves can be rearranged in the

following form

Tc =
T0κcd + Taκd lc + F̃c(Tc ,Ua)lcd

κcd + κd lc
,

Ta =
T0κad − Tcκd la + F̃a(Ta ,Ua)la d

κa d + κd la
.

We will re-arrange these equations for several resonances

as follows:

T1 = T0 + (l1/k1)

[ N
∑

n=1

Dn(EF1 − En)
2 me

2π2~3
1En

+ j2ρ1l1 − S(T1, T2)

]

,

T2 = T0 + (l2/k2)

[ N
∑

n=1

Dn(E1 − EF2 + eUa)
me

2π2~3
1En

+ j2ρ2l2 + S(T1, T2)

]

.

Dn = 1 at full resonances, the permeability peaks at

incomplete resonances are several orders of magnitude

greater than its values between these peaks, which justifies

the use of formulas. The electrode temperatures can be

determined from these nonlinear equations. On the other

hand, by putting Ta = βTc (in particular, β = 1), it is

possible to find a relationship between the lengths that

ensures these conditions. The PE for vacuum RT structures

should be solved at a very high current density, when a

significant change in the quantum potential used in the SE

is possible due to the spatial charge. At the same time, a

high current density results in the heating and the need to

solve the Fourier thermal conductivity equation for thermal

conductivity together with the SE and PE, also, preferably in

a non-stationary form. This is a complex nonlinear problem

that requires an iterative solution.

Heat generation due to the Nottingham effect at the

cathode and due to the ingress of accelerated electrons

to the anode occurs at their surfaces at a length of the

order of the FPL, which results in heating of the electrode

surfaces. The tunneling area size should be an order

of magnitude smaller than the FPL in the corresponding

materials, which limits the possible number of electrodes,

while in the tunneling area the transport is ballistic, i.e. there

is no scattering and heat dissipation. Heat generation occurs

only at the cathode and anode, i.e. the thermal problem

should be solved only on these electrodes. The well-known

Peltier effect occurs when the current passes through the

contact of two metals with different FE values. A similar

effect is considered in [51] in case of tunneling through a

single barrier and it is shown that under certain rather rare

conditions, it is possible to cool the anode with electrons of

certain energies. These conditions are determined by a low

anode voltage and a significantly higher FE of the anode

compared to the FE of the cathode. However, a significant

reverse tunneling current is possible from the anode to the

cathode and heating of the anode due to the Nottingham

effect under such conditions especially in case of RT. The

complete thermal balance is considered in this paper.

CNT piles can serve as good structures for grids. It is

technologically convenient to use grid and anode electrodes

with the same positive potential Ug = Ua , separated by
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dielectric substrates and made in the form of a single

block (Fig. 1). There may be several grid electrodes with

different grid voltages. Next, the index B denotes the size

of the barrier, the index W denotes the size of the well,

and tw = tg . It is convenient to take Ug = Ua = EFc/e for

RT, where EFc is cathode FE. In this case, all potential

wells have a bottom of the same level, coinciding with the

bottom of the cathode conduction band. It is desirable

to align the height of the barriers for RT, which can be

easily done by changing the DP εn and the thickness of

the dielectric layers tn . Papers [22,49,50] consider the

cases when dielectric films partially fill the cathode−anode

space. The higher the fill factor, the higher the tunneling

coefficient. The results of the analysis show that the case

of complete filling of the gap is more interesting, since it

results in a greater decrease (by εn times) of the heights

of the barriers. Heat is released on the anode due to

Joule heat, as well as due to the excess kinetic energy of

electrons during their scattering and transition to the anode

FL. However, heat absorption (cooling of the anode) is also

possible in the case of electron tunneling from low levels

at the cathode below the anode FL, if this is possible.

The temperatures of the cathode and anode surfaces are

generally different. The radiation heat transfer should be

taken into account if the cathode and anode are separated

by a vacuum gap. It is negligible in case of a temperature

difference of less than 1000 K. Diamond (ε = 5.6) or BeO

(ε = 2.955) with high thermal conductivity can be used as

a dielectric to equalize the temperatures of the cathode and

anode. Diamond is more preferable because its thermal

conductivity is higher and the barriers are almost twice as

low. Additionally, it has greater electrical strength, since

the conductivity of BeO at 700K is 10−2 S/m. SiO2 can be

another possible good dielectric for manufacturing of RTS.

2. Determination of quantum potentials

We will limit ourselves in this study to relations of the

type (13), (14), determining the set temperatures while

neglecting radiative heat transfer, solving the SE with

the definition of D± at defined temperatures with the

calculation of integrals (4), (5). The subject structures

(Fig. 1) can be either with RT, or without it, depending

on the configurations of the grids and the voltages on them.

V (x) = V0(x) + Va(x) should be taken in case of a diode

structure, where Va(x) = −xeUa/d, and the part of the

potential associated with multiple images is given by the

ratio [22]:

V0(x) = EFc +
Wc

ε
− e2

16πε0ε

{

1

x + δc

+
2x2

d(d − x + δa)(d + x)
+

2x2

d3

∞
∑

n=2

1
(

n2 − (x/d)2
)

n

}

.

(15)
Here, the parameters δc,a are related to the work function

(WF) from the cathode Wc = e2/(16πε0δc), WF from the

anode Wa = e2/(16πε0δa) and are introduced based on

experimental data. V (0) = V0(0) = EFc on the cathode.

V (d) = EFc + (Wc−Wa)/ε−eUa on the anode. All energy

levels at the anode are reduced by eUa if cathode and

anode materials and WF are the same. The energy for

such an energy diagram is counted from the bottom of

the cathode conduction band, the barrier relative to the FE

has a height of Wc/ε at a large size of d, and the barrier

decreases due to the Schottky effect at small values of d .
Equation (15) and calculation V (x) should be applied to

the diode structures for which they are written, and the

potential should be crosslinked in case of several electrodes.

Such an arrangement is required for each of the dielectric

(vacuum) gaps in the case of several electrodes, taking into

account that the potentials on the electrodes are set and

constant, and then it is necessary to use the continuity of

the potential.

Reduction of the barrier by ε = 5.6 times for diamond

results in an increase of the current of the tunnel diode by 3

or more orders of magnitude. A single barrier in the diode

structure in work [52] is approximated by a parabola in

the absence of the anode voltage. The dependence (14)
is conveniently approximated more precisely by the fol-

lowing expressions for Wc = Wa = W = e2/(16πε0δ) and

EFc = EFa = EF .

V0(x) ≈ EF + W (1− α/d)[1− (2x/d − 1)4]/ε, (16)

V0(x) ≈ EF + W
(1− α/d)(1 + δ/d)2

(1− δ/d)2ε

×
[

1− δd
(

z + δ(1− x/d)
)

(d − z + xδ/d)

]

, (17)

α = 2δ + δ

∞
∑

n=1

1

(2n − 1)n(2n + 1)
= δ

(

2 ln(2) + 1
)

.

V0(0) = V0(d) = EF in this case follows from the fact that

∞
∑

n=1

1

n(n + 1)(n + 2)
=

1

4
.

In all these cases, δ/d ∼ 10−2, and the error of the

specified ratios is of the order of δ2/d2 ∼ 10−4. The

ratio (17) is somewhat more accurate than (16). Figure 2

shows a comparison of the results of (15)−(17). There are

also results for approximating a parabola and a sixth-order

parabola. The parabolic approximation provides a pointed

vertex, and the sixth-order parabola approximation provides

a more flattened vertex. In the case of different cathode

and anode materials, the value (Wa−Wc)x/(εd) should be

added to (16) and (17). In the case of several electrodes,

the specified ratios should be applied sequentially. An

example of their application is shown in Fig. 3−6. Fig. 3

corresponds to the quantum heterostructure GaAs−AlAs.

Fig. 4 corresponds to a vacuum triode with one quantum

well, and Fig. 5, 6 corresponds to a vacuum diode. Figure

6 illustrates the effect on the potential of dielectric films
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and carbon structures on a metal cathode. We obtain a

solution of the SE using the obtained analytical dependences

V (x) without taking into account the spatial charge, i.e. at

a relatively low current density. The contribution to the

potential in case of its high density is estimated in the

study [23], and the corresponding formula is given below.
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V

7

8
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11

x

1

2

3
4

Figure 2. Comparison of approximation (V , [eV], x , [nm])
by formula (2) (curve 1), parabolic approximation (curve 2),
approximations by a parabola of the fourth (3) and sixth orders (4)
with exact [19] profile (symbols ∗∗∗) of the quantum potential (5)
in RTS with two wells (double grid) at the size of gaps (barriers)
tB = 1, the size of wells (grids) tW = 1 (nm) at EFc = 7 eV

and Ug = Ua = 0.
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Figure 3. Profiles V , [eV] depending on the coordinate x , [nm]
for semiconductor double-core RTDs at tB = tW = 1 nm (solid
curves) and tB = tW = 0.5 nm (dashed curves) at different anode

voltages (V): Ua = 0 (curves 1, 2), 0.25 (3), 0.3 (4), 0.5 (5),
0.6 (6).
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Figure 4. Quantum potential distribution V , [eV] in a vacuum

triode depending on the coordinate x , [nm] at d = 10 nm, grid

voltage 7V and different anode voltages (V): 0 (curve 1), 2 ( it2),
7 (3). EF = 7, W = 4.36 eV. Grid size 2 nm.
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Figure 5. Shape of the potential barrier V , [eV] in a vacuum

diode d = 10 nm depending on the coordinate x , [nm] at different
anode voltages (V): 0 (curve 1), 3 (2), 5 (3), 7 (4). EF = 7,

W = 4.36 eV.

3. One-dimensional SE
solution and current calculation

In our case, the easiest way to obtain a solution for the SE

is by using the method of wave impedance transformation,

since the wave function itself (WF) as such does not interest

us. We only need permeabilities D± . A small section

Technical Physics, 2024, Vol. 69, No. 1



Thermal-field emission in nanostructures with resonant tunneling 37

0 2 4 6 8 10

V

–15

–10

0

x

1

4

3

–5

10

5

25

6

8

7

Figure 6. Calculations of the quantum potential V , [eV] in

the diode depending on the coordinate x , [nm] in the presence

of structures on the cathode: glassy carbon-CNT (curves 1–4),
CNT pile (5), dielectric film (6–8). The dimensions are t, [nm]:
1 (curve 1), 5 (2, 7, 8), 4.18 (5), 9 (3, 4, 6). Wc = 4.36,

Wa = 5.5 eV. Curves 1–6 are constructed for Ua = 10V, curve 7 is

constructed for Ua = 0, curve 8 is constructed for Ua = 20V.

|x−xn| ≤ 1x/2 can be described by the wave function

ψ(x) = ψn(x) = A+
n exp(iknx) + A−

n exp(−iknx)

and its derivative, for which

ψ′

n(x) = iknA+
n exp(iknx) − iknA−

n exp(−iknx).

The matching of these functions can be performed

based on the transfer matrix method [22]. The use

of the sweep method is another solution. We have

ψ′′
n = (ψn+1−2ψn + ψn−1)/1x2 for it. By imposing bound-

ary conditions

ψ0 = A(E)
(

1 + R(E)
)

,

ψ′

0 = ikc(E)A(E)
(

1− R(E)
)

= (ψ1 − ψ0)/1x ,

ψN = A(E)T (E),

ψ′

N = ika(E)T (E)A(E) = (ψN − ψN−1)/1x ,

we obtain

2kc(E)A(E)1x = −iψ1 + ψ0

(

kc(E)1x + i
)

,

ψN−1 = ψN
(

1− ika(E)1x
)

.

This allows calculating the wave function at all discrete

points using the formula

ψn+1 =

(

2 +
2me1x2

~2
(E −Vn)

)

ψn − ψn−1, (18)

if, for example, ψ0 = 1 is used. The real value of ψ0

can be found by comparing the calculated value of ψN

with ψN−1/
(

1−ika(E)1x
)

. It is more convenient to use

a backward sweep. All values in this case are proportional

to ψN , the reflection coefficient does not depend on ψN

and is calculated immediately:

R(E) =
ikc(E)1x − ψ1/ψ0

ikc(E)1x + ψ1/ψ0

.

SE can be solved using the series method. It is convenient

to use the functions cos(nπx/d) and sin(nπx/d) for this

purpose [23]. The series method is convenient for the joint

solution of non-stationary SE, Fourier thermal conductivity

equation and PE. In this case, it consists in obtaining

equations for time-dependent expansion coefficients. The

self-consistent solution of the above equations together with

the problem of radiative heat transfer between the anode

and cathode results in a complex highly nonlinear non-

stationary problem. Such a problem, for example, is typical

for explosive emissions.

The method of transformation of normalized wave

impedances ηn = k0/kn, where kn =
√

2me
(

E−V (xn)
)

/~,

is more convenient. kc = k0 =
√
2meE/~ on the cathode,

ka =
√

2me
(

E−V (d)
)

/~ on the anode. By sequentially

transforming the impedance of the anode to the impedance

of the cathode according to the following formula

Zl−1 = ηl
Zl − iηl tan(k ltl)

ηl − iZl tan(k ltl)
, (19)

l = N, N − 1, . . . , 2, 1,

ZN = Za = ηa = k0/ka ,

we obtain the reflectance at the cathode

Rc(E) = (Z0 − η0)/(Z0 + η0)

and the permeability D+(E) = 1−|Rc(E)|2. We obtain

D−(E) = 1−|Ra(E)|2 by transforming from the cathode to

the anode. E > 0 should now be taken at the anode in this

case, counting the energy from the bottom of the anode

conduction band. At the same time, all energy levels at the

cathode increase by the value of eUa .

Let’s consider the simplest analytical model of a tunnel

diode with a rectangular barrier as an example. Let

the electrode materials be the same. The height of

the barrier relative to FL is taken to be equal to W ,

i.e. relative to the bottom of the cathode conduction band

V = EF + W , and relative to the bottom of the anode

conduction band V = EF + W + eUa . Let this barrier exist

in the area 0 < z < d . k = i
√

2me(EF + W − E)/~ in the

barrier in the first case and the normalized impedance

is η̃ = −i/
√

(EF + W )/E − 1. It is normalized to nc .

We have the step Va = EF − eUa and the parameters

ka =
√

2me(E + eUa)/~, η̃a = 1/
√
1 + eUa/E in the area
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z > d . kc = k0 =
√
2meE/~, η̃c = 1 at the cathode. We

obtain the input impedance, reflectance and permeability:

Z0 = |η̃| η̃a − i|η̃| tanh(|k|d)

|η̃| + i η̃a tanh(|k|d)
,

Rc(E) =
Z0 − 1

Z0 + 1
=

|η̃|η̃a − |η̃| − i(|η̃|2 + η̃a) tanh(|k|d)

|η̃|η̃a + |η̃| − i(|η̃|2 − η̃a) tanh(|k|d)
,

|Rc(E)|2 =
|η̃|2(η̃a − 1)2 + (|η̃|2 + η̃a)

2 tanh2(|k|d)

|η̃|2(η̃a + 1)2 + (|η̃|2 − η̃a)2 tanh
2(|k|d)

,

D+(E) =
4|η̃|2η̃a

(

1− tanh2(|k|d)
)

|η̃|2(η̃a + 1)2 + (|η̃|2 − η̃a)2 tanh
2(|k|d)

≤ 1.

In the case of a broad barrier

tanh2(|k|d) = 1− 4 exp(−2|k|d),

and we have

D+(E) ≈ 16|η̃|2η̃a exp(−2|k|d)

(|η̃|2 + 1)η̃2a + |η̃|2 + |η̃|4 .

In the case of a broad and high barrier |η̃| ≪ 1, and then

D+(E) ≈ 16|η̃|2η̃a exp(−2|k|d)

η̃2a + |η̃|2 .

In case of high voltage at the anode η̃a ≪ 1. In all these

cases D+(E) ≪ 1. In the case of an extremely narrow

(d → 0) barrier D+(E) = 4η̃a/(η̃a + 1)2 ≤ 1. The equality

is achieved at η̃a = 1 or at Ua = 0. Non-zero voltage always

results in the reflection. Tunneling from the anode is not

possible if E < 0, since there are no negative levels at the

cathode. Electrons leave the anode to the source with FE

EFa . We obtain the following by transforming the wave

impedance of the cathode η̃c =
√

E/EF to anode

Za = |η̃| η̃c − i|η̃| tanh(|k|d)

|η̃| + i η̃c tanh(|k|d)
,

Ra(E) =
|η̃|(1− η̃c) + i(η̃c + |η̃|2) tanh(|k|d)

|η̃|(1 + η̃c) + i(η̃c − |η̃|2) tanh(|k|d)
,

|Ra(E)|2 =
|η̃|2(1− η̃c)

2 + (η̃c + |η̃|2)2 tanh2(|k|d)

|η̃|2(1 + η̃c)2 + (η̃c − |η̃|2)2 tanh2(|k|d)
,

D−(E) =
4|η̃|2η̃c

(

1− tanh2(|k|d)
)

|η̃|2(1 + η̃c)2 + (η̃c − |η̃|2)2 tanh2(|k|d)
≤ 1.

Permeability is low at η̃c ≫ 1 (i.e. at E ≫ EF):
D−(E) ≈ 4

√
EF/E . The value of η̃c is small at E ≪ EF , and

the permeability of D−(E) ≈ 2η̃c exp(−2|k|d)/(1 + |η̃|2) is

exponentially low. In reality, the model in the form of

a rectangular barrier is very inaccurate. It can be used

for wide barriers and small values eUa compared to WF

and FE. In reality, the barrier is close to a triangular shape,

placed on a rectangular pedestal. Such a barrier reflects

significantly less than a rectangular barrier of the same

width. Modeling of RTS with several rectangular barriers

requires correction of their widths [23]. The width and

height of a single barrier decreases with an increase of

the anode voltage Ua . It disappears at a critical field

Exc = Ua/d = 16πε0W 2/e3 , forming a bevel to the anode,

while the transparency of the FL cathode may be close

to unity. Exc = 5.7 · 1010 V/m at W = 4.5 eV. Voltages

one order of magnitude lower already provide permeability

several orders of magnitude less. RT makes it possible to

obtain permeability of D = 1 for some energies, while it is

important that they can be significantly lower than the FL

cathode. This theoretically makes it possible to increase the

tunneling current by several orders of magnitude at fields

significantly lower than the critical level. Usually, the shapes

of single and multiple barriers are considered rectangular

for simplicity. Quantum approaches to determining the WF

and the shape of barriers are very complex and difficult

to implement in the problems of calculating the emission

current. The WF can be calculated using the density

functional theory method, but its experimental values can

be used more accurately. Formally, the quantum potential

for SE should be calculated, depending on the spatial charge

density of the ejected electrons in the vacuum region and

with several electrodes, which is difficult to perform using

the quantum approach. In reality, the profile of simple and

complex barrier structures — quantum potential V (z ) —
can be strictly determined by the method of multiple

images [22,49,50] Fig. 3−6. It is close to a triangle

placed on a rectangular pedestal between two electrodes

with high voltage (e.g. in diode) (Fig. 5). It is close

to an inverted parabola of the fourth degree placed on

a pedestal between two close electrodes with the same

potential (for example, two grids) (Fig. 2, 3, 5). It should

be noted that there are levels at the cathode at T = 0

that are higher than the levels at the anode. For them

always D+ ≫ D− at eUa > 1 eV and they determine the

main current. Therefore, the current from the cathode is

always greater than the current from the anode, although

the thermal current from a highly heated anode may be

greater than the thermal current from a colder cathode.

The heating of the anode increases with an increase of Ua .

Increase of Ua reduces W . The greater is the d and the

voltage the closer the shape is to triangular. Calculations

show that a triangular barrier is more permeable than a

rectangular one of the same height and width, and it is

necessary to reduce the width of the rectangular barrier by

more than two times for obtaining the same permeability.

Therefore, the above analytical relations can be used for

low voltages and for sufficiently high temperatures when

a single barrier is still close to a rectangular one, i.e. in

the case of thermal emission. There are electrons of all

energies at a non-zero temperature, and the parameters

k =
√

2me(E − EF −W )/~ and η = 1/
√

1− (EF + W )/E
become valid when the energies of the barrier height are

exceeded, while

Z0 = η
ηa − iη tan(kd)

η − iηa tan(kd)
,
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|Rc(E)|2 =
η2(ηa − 1)2 + (η2 − ηa)

2 tan2(kd)

η2(ηa + 1)2 + (η2 + ηa)2 tan
2(kd)

,

D+(E) =
4η2ηa

η2(ηa + 1)2 + [(η2+ηa)2−η2(ηa +1)2] sin2(kd)
.

High energies E ≫ eUa and E ≫ EF will result in

ηa = 1− eUa/(2E), η = 1− (EF + W )/(2E). We ob-

tain D+ = 4ηa/(ηa + 1)2 ≤ 1 and D+ ≈ 1− e2U2
a /(4E2) at

kd = nπ. D+ = 4η2ηa/(η
2 + ηa)

2 ≤ at kd = (2n − 1)π/2,
and D+ ≈ 1− (EF + W )2/E2 − e2U2

a /(4E2) at high en-

ergies. Usually W ≪ EF with eUa = EF , and then

D+ ≈ 1− 5e2U2
a /(4E2). It is possible to use average value

of D+ ≈ 1− 3e2U2
a /(4E2). Usually it is assumed that

D+ = 1 in case of thermal emission, or a small correction

for the unit deviation of permeability is determined and

an adjusted Richardson formula is obtained. The following

approximation can be used in case of E ≫ eUa

D+(E) ≈ 1− (EF + W + eUa/2)

E
sin2(kd). (20)

It is necessary to calculate permeability D± for each

energy and in broad energy ranges for a rigorous analysis

of TFE, and it is necessary to numerically determine

integrals (4), (5) with them. Numerical estimates show that

it is sufficient to take the upper limit 3EF for T < 2500K. It

is difficult to obtain accurate analytical expressions mainly

due to the complexity of defining D±. If tunneling from the

anode is impossible in the RTS at eUa > EFc and T = 0,

then there are always energies at the final temperature that

coincide with the resonant levels for which D− = 1. In

the general case, this requires taking into account both

formulas (4), (5) and solving the SE for the corresponding

quantum potentials.

Let’s consider the simplest case Tc = Ta = T , which can

be achieved by selecting electrode lengths and conditions

for RTS with a single grid. The condition Ug = Ua means

that the bottom of the well coincides with the maximum

energy at the anode at T = 0. The bottom of the well and

the maximum energy at the anode corresponds to zero if

Ug = Ua = EF/e. In this case, RT is possible only from the

cathode. In this case, the integral (1) can be replaced by

the sum

J(Ua) = J+(Ua) ≈
−eme

2π2~3

N
∑

n=1

(EFc − E ′

n)E
′′

n (21)

of the resonant energy levels En = E ′
n−iE ′′

n . The specified

complex resonance levels should be found from the condi-

tion Rc(En). We obtain D+(En) = D−(En) for T > 0 , but

dn+
E ≫ dn−

E , and J− can be neglected according to (3). We

obtain D+(En) ≈ D−(En) ≈ 1 in the region E ≫ EFc and

the following ratios for densities

dn+
E =

mekBT
2π2~3

exp

(

−E − EF

kBT

)

dE,

dn−

E =
mekBT

2π2~3
exp

(

−E+eUa−EF

kBT

)

dE =exp

(

− eUa

kBT

)

dn+
E ,

that also satisfy the condition dn+
E ≫ dn−

E at a not too

high temperature. Integrals (4) and (5) are divided

into the regions 0 < E < EF and EF < νE < ∞, where

ν ∼ 3−4. kBT = 0.026 eV at room temperature. We have

kBT = 0.217 eV at the maximum operating temperature

of T = 2500K, therefore, the following estimate can be

obtained taking the upper limit EF

−J−(Ua , T ) =
emekBT
2π2~3

EF
∫

0

D−(E,Ua) exp

(

− E
kBT

)

dE

<
eme(kBT )2

2π2~3

(

1− exp

(

− EF

kBT

))

.

Here we majored the integral and took the electrodes

the same. The incoming exponent is 10−14 even for the

highest temperatures, and the integral itself is less than

0.001A/m2 for all temperatures. The calculation at T = 0

gives the maximum values of j+ ∼ 1012−1013 A/m2 in case

of RT. The majority estimate was obtained at D− = 1. In

reality, this value can be achieved at some points of E ′
n

at E ′′
n /E ′

n ∼ 10−3 in case of resonant tunneling, between

which the permeability is several orders of magnitude lower.

We obtain an estimate of | j−| ∼ 10−6 A/m2 taking the

average value of D̄− = 0.001. Therefore, the backward

current can be completely neglected in case of resonant

tunneling. This is also true in a conventional non-

resonant (diode) structure. A small compared to kBT or

a comparable value of eUa can be considered to be the only

condition for a significant backward current. In this case, the

backward current can be greatly increased in comparison

with the direct current by exceeding the temperature of the

anode in comparison with the cathode. The remainder of

the integral can be estimated by analytical calculation

∞
∫

νEF

(

1− 3e2U2
a

4E2

)

exp

(

−E − EF

kBT

)

dE ≈ kBT

× exp

(

− (ν − 1)EF

kBT

)(

1− 3e2U2
a

4(νEF)2

)

.

It can be seen from this the specified remainder is so

small that it may be neglected in case of ν = 3, when

these ratios are fulfilled with good accuracy. Therefore, it

is possible to limit the integral to the upper limit 3EF . In

reality, this limit can even be lowered.

Fig. 4 shows the distribution of potential in a structure

with a single grid (one well) at different voltages on the

grid. The structure is chosen to be asymmetric without RT.

Permeabilities D+ are plotted for this structure in Fig.

7 and dependences of current density on temperature at

different anode voltages are plotted in Fig. 8. Fig. 9 shows

permeabilities for RTS with one and two wells. A thin

layer of barium on copper was considered. The RT is not

complete in the structure shown in Fig. 7, whereas Fig. 9

shows several RT peaks. A cathode with a low WF (barium)
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and grid electrodes with an increased WF (platinum) were

taken to align the barriers. The use of RTS with one and

two grid electrodes is very promising as vacuum sources of

electrons in the designs of electronic devices, in particular,

electronic guns for the TWB of a THz range. There is a

current from the cathode to the anode in all such structures,

but there is also a backward tunneling current from the

anode to the cathode. It is usually extremely small. It
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Figure 7. Permeability depending on the kinetic energy of

electrons E, [eV] in a triode nanostructure at different voltages (V)
on the grid and anode: Ug = 7, Ua = 7 (curve 1); Ug = 7,

Ua = 5 (2); Ug = 7, Ua = 3 (3); Ug = 5, Ua = 7 (4); Ug = 5,

Ua = 5 (5).

0 500 1000 2500

J

T

1

4

3

2.0·1013

2

0.5·1013

1.0·1013

1.5·1013

1500 2000
0

Figure 8. Temperature dependence of current density J, [A/m2]
in a triode nanostructure at different voltages (V) on the grid

and anode: Ug = 7, Ua = 7 (curve 1); Ug = 7, Ua = 3 (2); Ug = 5,
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results for Ug = 7, Ua = 5. EF = 7 eV, W = 4.36 eV.
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plotted for wells with tW = 0.6 nm, curves 2, 5 for tW = 1.2 nm,

curve 3 for tW = 2 nm. The values Wc = 2.5, EFc = 5,

Wg = 6.35 eV

were used.

should be taken into account at low or alternating voltages

at the anode. The backward current is exponentially small

in our case of significant anode voltage. It is necessary to

modify the potential used above for taking into account the

spatial charge. The modification has the following form if

the gap is completely filled with a dielectric

Va(x) = −eUa x
d

− 2ed
π2εε0

∞
∑

n=1

d
∫

0

|ψ(x ′)|2n−2 sin

(

nπx
d

)

× sin

(

nπx ′

d

)

dx ′.

(22)
Partial or inhomogeneous filling requires a numerical

solution of PE. The solution (22) is applicable to several

electrodes. It is necessary to use an iterative procedure for

calculating the wave function and current density based on

the consideration of the spatial charge. If the grid voltage

is greater than the anode voltage, then the last barrier

at the anode has a bevel towards the cathode (Fig. 4).
The counting from the bottom of the cathode conduction

band and at Ua = Ug = EFc will provide Va = Vg = 0. We

consider the grids to be an order of magnitude thinner

than FPL. Then the electron transport is ballistic without

scattering. The constant quantum potential corresponds

to FL with this definition, V (z ) on the grids and on the

anode.

The following is apparent without taking into account the

spatial charge if there is a non-conductive ideal dielectric
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film with a thickness of t on the cathode, and there is a

vacuum in the region of t < z < d

Va(x) = −eU(x) = −eUa

×
{

x/[εd + (1− ε)t], 0 ≤ x ≤ t,
(

εx + t(1 − ε)
)

/[εd + (1− ε)t], t < x ≤ d.

This function satisfies the Laplace equation and the

boundary conditions at the cathode Va(0) = 0, at the

anode Va(d) = −eUa and at the dielectric boundary (it is
continuous and creates continuous induction). The values of
the function V0(x , t, ε) are also used in [22,49,50] when

the region is partially filled with a dielectric, instead of

the function (15). Such a function requires the construc-

tion of multiple images relative to two metallic and one

dielectric surface, i.e. has a significantly more complex

appearance. The method is based on the introduction of

the coefficient of reflection of the electrostatic induction

flux (1− ε)/(1 + ε) from the surface of the dielectric.

The coefficient of reflection from the metal corresponds to

an infinite DP and is equal to −1. The dielectric layer

on the cathode greatly increases the number of images.

The function constructed in this way has the properties

V0(x , d, ε) = V0(x), V0(x , t, 1) − EFc = ε
(

V0(x) − EFc

)

. It

also takes into account the WF from the dielectric. Figure

6 shows the results of constructing a quantum potential for

structures with partial dielectric filling. It should be noted

that semiconductor and carbon structures can have both

free and bound charges at the cathode (for example, π-

electrons). The film can have both dielectric and metallic

properties depending on the concentration of Ne and the

ratio of thickness t and the length of the Debye shielding

LD =
√

ε0εkBT/(Nee2). The field penetrates into a part of

the film in the intermediate case. The penetration of the

field into the film results in a bevel of the potential to the

barrier (Fig. 6). This bevel results in the acceleration of

electrons running into the barrier. The barrier arises mainly

beyond the boundary of the dielectric and the vacuum. The

film occupying a significant part of the gap results in the

dimensional effect of narrowing the barrier [22,49,50]. The
curves 3, 4 in Fig. 6 are constructed taking into account

the solution of the PE for the concentration of electrons in

the film.

Let’s consider the diode RTS from Ga1−xAlxAs. GaAs

consists of well-conducting layers (cathode, anode and

GaAs layers, which can be strongly alloyed) separated by

low-conductivity layers of Ga1−xAlxAs, i.e. almost dielectric.

The band gap of GaAs is 1.42 eV, the band gap of

and AlAs is 2.16 eV at x = 0. The mobility of electrons

∼ 1200 cm2 ·V−1 · s−1 and their effective mass ∼ 0.7me

at AlAs. The refraction index in the IR range is 3, i.e. DP

can be considered equal to 9. We have electrons with

effective mass of 0.067me , mobility 8500 cm2/(V · s), light
holes with effective mass of 0.082me and heavy holes with

effective mass of 0.45me for GaAs. Hole mobility —
400 cm2/(V · s). Hole current can be neglected in the first

approximation. Taking the thickness 2 nm for the AlAs

layer, we obtain the barrier height of 0.45 eV considering

the work function of 4.7 eV and DP 9. A height of the order

of 0.38 eV is obtained with a thickness of 1 nm. Electrode

alloying and performing non-alloyed GaAs regions in wells

can result in a slight rise of their bottom relative to the

bottom of the cathode conduction band. The application

of voltage to the anode results in the addition of an

appropriate potential to the reduced distribution. The

additional potential in the layers can be considered as a

piecewise linear function because DP weakens the electric

field. The lower the potential drop, the larger the DP layer.

It is easier to use the linear potential 80(z ) = −zUa/d
without kinks since the GaAs DP ε = 10.9 differs only

slightly from the AlAs DP. Its superposition results in a

bevel of the quantum potential profile (Fig. 3). In this

case, the bottom of the wells also has a slope, which

distinguishes such a structure from a structure with grids,

i.e. with set potentials on conductive layers. We will denote

the sizes of the areas tn, n = 1, 2, . . . starting from the

cathode (Fig. 1). In triode structures with the same positive

grid potentials, the bottom of the pits is horizontal. It

is technologically difficult to make hanging grids, so it is

advisable to apply them to dielectric layers. The height of

the vacuum barrier at its width t = 2 nm will be slightly less

than WF and approximately equal to 0.86W/ε if the cathode

WF is W which for the value W = 4.7 eV and ε = 10

are approximately equal to 0.4 eV. The semiconductor RT

heterostructure is usually significantly shorter than the

vacuum heterostructure. A good material for grids is n-
layered graphene. A heterostructure can be considered

quantum if its length is significantly less than the FPL,

otherwise it should be considered as a classical superlattice.

For the latter, a series of tunneling problems should be

solved, considering each electrode as macroscopic, i.e.,

taking into account the electron energy levels on it. Taking

the FPL in GaAs 120 nm, we obtain the lengths of structures

of the order of 10 nm. In graphene, it is more than an order

of magnitude larger. However, this value is obtained in case

of movement in the graphene plane. The movement has a

perpendicular direction in a grid of n-layered graphene. The

FPL in this direction is also large because the layers are

bound by van der Waals forces at distances of 0.335 nm.

This length is in the order of 50 nm in metals, i.e. it is

problematic to make metal grids, since it is necessary to

obtain sizes less than 2 nm. Let’s assume that with a

structure length of less than 20 nm, it can still be considered

as a quantum one. As is known, a quantum particle

penetrates the barrier without loss of energy, i.e. with the

same momentum as it runs into it. This corresponds to the

last turning point in a potential profile with several wells

and humps. The particle moves quasi-classically after this

turning point, it is accelerated by the anode, and the particle

releases energy eUa when it hits the anode. The energy

E−VFa is released at the anode if the level E from which the

electron tunnels is higher than the anode FL. This energy

is EFc−EFa = eUa in case of tunneling from the cathode
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FL. This value can be negative in case of tunneling from

deep levels and at a low potential of the anode, while

the anode cools down, since the tunneled electron passes

to FL [51]. The wave function at the anode can be taken

as ψa = T
√

n(kc) exp
(

ika(z − d)
)

for the diode structure,

therefore |T |2 = kc/ka < 1. Equality takes place at Ua = 0

when |T |2 = 1− |R|2 = D. The quantum potential V (x)
is a bevel of length d in case of a critical electric field at

the cathode Ecz = 16πε0W 2/e3, which is steeper the higher

the voltage. It can be approximately replaced with a step

at high voltage. We obtain 1 + R = T , 1− R = (ka/kc)T
for it, i.e. R = (kc−ka)/(kc + ka). We obtain ka ≫ kc

and R ≈ −1 with a large Ua . A quantum particle cannot

”
slide“ down into an infinitely wide and deep quantum well.

This explains the fact that it makes no sense to increase

voltages and fields above Ecz for increasing the current.

Moreover, such fields cause local instabilities because of

the atomic surface irregularities and explosive emission that

destroys the cathode. RT occurs at significantly lower fields

and significantly higher current densities.

Fig. 3 shows the results of calculating the quantum poten-

tial profiles of AlAs/GaAs/AlAs/GaAs/AlAs semiconductor

RTS with one and two wells at different voltages at the

anode based on the ratio (8). The DP everywhere is

ε = 12.9, GaAs WF is taken equal to 4.7 eV, FE is taken

equal to 0.04 eV, which corresponds to the concentration

of donors in the electrodes N = 3.6 · 1025 m−3. The

length of the Debye shielding is LD = 0.7 nm at such

a concentration for room temperature, i.e. less than the

length of the layer, and it can be considered almost

metallic. The concentration should be increased by an

order of magnitude for interpreting the layer as metallic,

while the FE will increase by 4.6 times. The complex

resonant frequencies obtained from the condition fully

correspond to the RT peaks shown in Fig. 8, while the

tunnel current density 3 · 1013 A/m2 corresponds to the

structure. Such densities can be obtained for for RTS with

copper electrodes and diamond films between them of size

2−3 nm.

The results of calculation of the temperature according

to formulas (13), (16) depending on the length of the

electrodes for the structures 1, 2, 5 RTS are listed in the

table (fig. 9). The same lengths lc = la = l are taken,

while J ∼ 5 · 1011 A/m2. Ua = 3.5V is taken for reduction

of the temperature of the anode. For semiconductor

RTS, the achievable current density can be at 2−3 orders

of magnitude lower mainly due to the significant ohmic

resistance. For GaAs µ = 0.067me , the intrinsic semicon-

ductor at room temperature has an electron concentration

of N = 1.8 · 1012 m−3. In case of doping and reaching

a concentration of N = 3.4 · 1021 m−3 FE at the cathode

EFc = 0.3 eV, and a barrier height of 0.4 eV is possible. The

heat dissipation can also be estimated under such conditions.

RT with high current density results in heating. The cathode

and anode sizes should be small, and the thermostats

should be massive for reducing the operating temperatures

at RT. It is convenient to use equal grid and anode voltages

under the condition Ua = EFc/e. In this case, the barriers

can be aligned by changing their sizes and changing the

WF at the cathode and on the grids. It is necessary to

increase the WF of the grid material in comparison with

the WF of the cathode. Multilayer graphene, tungsten,

palladium, platinum are such convenient materials with

increased WF (respectively WF: 4.8; 4.54; 4.91−5.01; 5.0;

5.35−6.35 eV). It is possible to increase WF by fluoridation.

The FE should be high at a low effective WF for the

formation of deep resonant levels at the cathode. The

electrode WF can be increased and barriers can be aligned

by changing the electronic affinity. For example, platinum

hexafluoride (7.0± 0.35 eV) and Pt3Zr have a very high

value of electron affinity. An increase of the size of

the grid electrodes results in an increase of the size of

the wells and an increase of the number of resonances.

Barriers of several nanometers results in a decrease of

the current density by orders of magnitude. They are

easier to implement technologically. Usually metal films

on dielectric substrates have a thickness of 2 nm and more.

The thinnest single grid can be made of n-layered graphene.

A thickness of 0.34 nm is obtained at n = 2 , a thickness

of 1.02 nm is obtained at n = 4. Low voltages and shallow

wells can result in a lack of resonances or in a single

resonance. Thermal emission may be significant in this

case.

Conclusion

The study considers 1D-model of TFE in nanoscale

quantum RTS with three electrodes, as well as in a diode

structure, when the electrodes are heated due to the struc-

ture current. The study found conditions when backward

current can be neglected in high-current structures. It

should be taken into account at very low anode voltages,

or with a highly heated anode. General expressions are

obtained at different electrode temperatures and the heat

balance is considered. The approach can be used for non-

stationary processes, for which it is necessary to jointly solve

the corresponding SE, PE and Fourier thermal conductivity

equation. The short time of flight in such structures makes

them promising for the creation of THz-band devices. The

simplifications used in the analysis of heat transfer result

in the need to consider the numerical results obtained

as estimates. Nevertheless, the principle achievability of

electrode temperatures below 2000 K at very high current

densities in RTS in quasi-stationary mode was shown.
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