Study of the influence of electron beam irradiation on the photoelectric and electrophysical properties of silicon HJT solar cells
Mikhaylov O. P.1,2, Baranov A. I.1, Gudovskikh A. S.1,2, Terukov E. I.2,3,4, Kochergin A. V.2,4, Kostik N. R.2, Ataboev O. K.5
1Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
2St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
3Ioffe Institute, St. Petersburg, Russia
4R&D Center of Thin Film Technologies in Energetics under the Ioffe Institute LLC, St. Petersburg, Russia
5Institute of Semiconductor Physics and Microelectronics, Tashkent, Uzbekistan
Email: baranov_art@spbau.ru

PDF
In this work, HJT solar cells based on heterostructures n-Si:H/c-n-Si/p-Si:H were fabricated and studied, as well as the effect of electron irradiation on their photovoltaic properties. It has been shown that when irradiated by electrons with a fluence of 5· 1014 cm-2, a catastrophic drop in the quantum efficiency occurs at wavelengths greater than 600 nm, leading to a decrease in the short-circuit current from 33 mA/cm2 to 22 mA/cm2 and the open-circuit voltage from 0.7 V up to 0.52 V, and at a fluence of 1· 1015 cm-2 and 0.50 V. Admittance spectroscopy revealed a defect with an activation energy of 0.18 eV in irradiated structures, which could probably be responsible for degradation of photoelectrical properties, and its the concentration increases with increasing fluence. Keywords: solar cell, admittance spectroscopy, radiation resistance.
  1. M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe, G. Siefer, X. Hao, Prog. Photovolt.: Res. Appl., 31 (7), 651 (2023). DOI: 10.1002/pip.3726
  2. M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa, Y. Kuwano, Jpn. J. Appl. Phys., 31 (11), 3518 (1992). DOI: 10.1143/JJAP.31.3518
  3. K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, T. Asatani, D. Adachi, M. Kanematsu, H. Uzu, K. Yamamoto, Solar Energy Mater. Solar Cells, 173, 37 (2017). DOI: 10.1016/j.solmat.2017.06.024
  4. A. ur Rehman, S.H. Lee, S.H. Lee, J. Korean Phys. Soc., 68 (4), 593 (2016). DOI: 10.3938/jkps.68.593
  5. C.R. Brown, V.R. Whiteside, D. Poplavskyy, K. Hossain, M.S. Dhoubhadel, I.R. Sellers, IEEE J. Photovolt., 9 (2), 552 (2019). DOI: 10.1109/JPHOTOV.2018.2889179
  6. R.A.C.M.M. van Swaaij, A. Klaver, J. Non. Cryst. Solids, 354 (19-25), 2464 (2008). DOI: 10.1016/j.jnoncrysol.2007.09.025
  7. A.D. Verkerk, J.K. Rath, R.E.I. Schropp, Energy Procedia, 2 (1), 221 (2010). DOI: 10.1016/j.egypro.2010.07.032
  8. E.I. Terukov, A.S. Abramov, D.A. Andronikov, K.V. Emtsev, I.E. Panaiotti, A.S. Titov, G.G. Shelopin, Semiconductors, 52 (7), 931 (2018). DOI: 10.1134/S1063782618070230
  9. A.S. Gudovskikh, J.-P. Kleider, E.I. Terukov, Semiconductors, 39 (8), 904 (2005). DOI: 10.1134/1.2010683
  10. S.P. Vikhrov, N.V. Vishnyakov, V.V. Gudzev, A.V. Ermachikhin, D.V. Shilina, V.G. Litvinov, A.D. Maslov, V.G. Mishustin, E.I. Terukov, A.S. Titov, Semiconductors, 52 (7), 926 (2018). DOI: 10.1134/S1063782618070254
  11. Z. Li, H.W. Kraner, E. Verbitskaya, V. Eremin, A. Ivanov, M. Rattaggi, P.G. Rancoita, F.A. Rubinelli, S.J. Fonash, C. Dale, P. Marshall, IEEE Trans. Nucl. Sci., 39 (6), 1730 (1992). DOI: 10.1109/23.211360
  12. A. Ogmundsson, E.V. Monakhov, T.E. Hansen, J.K. Grepstad, B.G. Svensson, Nucl. Instrum. Meth. Phys. Res. A, 552 (1-2), 61 (2005). DOI: 10.1016/j.nima.2005.06.007

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru