Measurement of local stresses in the surface layers of multilayer structures by the null method using phase matching
Stupak М.F.1, Dvoretsky S.A.2,3, Mikhailov N.N.2,4, Makaroc S.N.1, Elesin A.G.1
1Technological Design Institute of Scientific Instrument Engineering at the Siberian Branch of the Russian Academy of Sciences (TDI SIE SB RAS), Novosibirsk, Russia
2Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
3Tomsk State University, Tomsk, Russia
4Novosibirsk State University, Novosibirsk, Russia
Email: stupak@tdisie.nsc.ru, dvor@isp.nsc.ru, mikhailov@isp.nsc.ru, makarovsn@tdisie.nsc.ru, elesin.andrei@tdisie.nsc.ru
A new null method for measuring the values of residual mechanical stresses in surface layers has been developed, based on the measurement of the second harmonic generation signal caused by the anisotropy of polarization of the reflected IR laser radiation from the surface of the rotated sample under study with the subsequent passage of radiation through a nonlinear crystal oriented to the phase matching for the anisotropic polarization. Quantitative data of the amplitude of the second harmonic signal from the magnitude of the stresses were obtained. The residual stresses in the HgCdTe surface layer of the HgCdTe/CdTe/ZnTe/GaAs multilayer structure grown by the MBE method have been measured, which is equal to 0.0045 N. The observed fine structure of the second harmonic signal allows us to conclude about the complex structure of residual stresses. Keywords: stresses, second harmonic, polarization, semiconductor structure.
- Sianko S.F., Zelenin V.A., Devices and Methods of Measurements, 9 (3), 254 (2018). DOI: 10.21122/2220-9506-2018-9-3-254-262
- H. Nagai, J. Appl. Phys., 45 (9), 3789 (1974). DOI: 10.1063/1.1663861
- I.D. Loshkarev, A.P. Vasilenko, E.M. Trukhanov, A.V. Kolesnikov, M.A. Putyato, M.Yu. Esin, M.O. Petrushkov, Tech. Phys. Lett., 43 (2), 213 (2017). DOI: 10.1134/S1063785017020225
- M.F. Stupak, N.N. Mikhailov, S.A. Dvoretsky, S.N. Makarov, A.G. Yelesin, A.G. Verhoglyad, Tech. Phys., 67 (14), 2290 (2022). DOI: 10.21883/TP.2022.14.55233.34-21
- M.F. Stupak, N.N. Mikhailov, S.A. Dvoretskii, M.V. Yakushev, D.G. Ikusov, S.N. Makarov, A.G. Elesin, A.G. Verkhoglyad, Phys. Solid State, 62 (2), 252 (2020). DOI: 10.1134/S1063783420020201
- P.E. Berezhnaya and M.F. Stupak, Proc. SPIE 4900, 98 (2002)
- S.A. Dvoretsky, M.F. Stupak, N.N. Mikhailov, S.N. Makarov, A.G. Elesin, A.G. Verhoglyad, Semiconductors, 56 (8), 562 (2022). DOI: 10.21883/SC.2022.08.54114.31
- S.L. Musher, M.F. Stupak, V.S. Syskin, Quantum Electron., 26 (8), 743 (1996). DOI: 10.1070/QE1996v026n08ABEH000768
- R.N. Jacobs, L.A. Almeida, J. Marcunas, J. Pellegrino, M. Groenert, M. Jaime-Vasquez, N. Manadik, C. Andrews, S.B. Qadri, T. Lee, M. Kim, J. Electron. Mater., 37 (9), 1480 (2008). DOI: 10.1007/s11664-008-0519-z
- A.B. Smirnov, Semicond. Phys. Quantum Electron. Optoelectron., 15 (2), 170 (2012). DOI: 10.15407/spqeo15.02.170
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.