Violation of the conformity between the induction current and the emission current during the pyroelectric effect in a single crystal of lithium tantalate under vacuum conditions
Oleinik A. N. 1, Gilts M. E. 1, Karataev P. V. 2, Klenin A. A. 1, Kubankin A. S.1,3, Shapovalov P. G. 4
1Laboratory of Radiation Physics, Belgorod State National Research University, Belgorod, Russia
2John Adams Institute at Royal Holloway, University of London, Egham, U.K.
3Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
4National Research Nuclear University “MEPhI”, Moscow, Russia
Email: oleynik_a@bsu.edu.ru

PDF
A comparison of the induction current and the emission current during the pyroelectric effect under vacuum conditions with periodic variation in the temperature of a single crystal of lithium tantalate is presented. An increase in the variation frequency leads to suppression of the emission current, which prevents observing the effect of the optimal frequency with the maximum amplitude as in the case of the induction current. The conformity of both current forms is shown, except for the region of 2 mHz and less where an additional current wave is observed. It is established that this additional wave is initiated above a certain threshold of potential difference and leads to its stabilization. Keywords: pyroelectric effect, ferroelectric electron emission, pyroelectric accelerator, lithium tantalate.
  1. G. Rosenman, D. Shur, Ya. Krasik, A. Dunaevsky, J. Appl. Phys., 88, 6109 (2000). DOI: 10.1063/1.1319378
  2. H. Gundel, H. Riege, J. Handerek, K. Zioutas, Appl. Phys. Lett., 54, 2071 (1989). DOI: 10.1063/1.101169
  3. J.D. Brownridge, Trends in electro-optics research (Nova Science Publ., N.Y., 2005)
  4. J.D. Brownridge, S.M. Shafroth, Appl. Phys. Lett., 79, 3364 (2001). DOI: 10.1063/1.1418458
  5. N. Kukhtarev, T. Kukhtareva, M. Bayssie, J. Wang, J.D. Brownridge, J. Appl. Phys., 96, 6794 (2004). DOI: 10.1063/1.1808479
  6. A. Oleinik, M. Gilts, P. Karataev, A. Klenin, A. Kubankin, J. Appl. Phys., 132, 204101 (2022). DOI: 10.1063/5.0124599
  7. L.E. Garn, E.J. Sharp, J. Appl. Phys., 53, 8974 (1982). DOI: 10.1063/1.330454
  8. R. Ghaderi, F.A. Davani, Appl. Phys. Lett., 105, 232906 (2014). DOI: 10.1063/1.4903891
  9. A.N. Oleinik, E.V. Bolotov, M.E. Gilts, O.O. Ivashchuk, A.A. Klenin, A.S. Kubankin, A.V. Shchagin, Bull. Lebedev Phys. Inst., 48, 127 (2021). DOI: 10.3103/S1068335621050079
  10. P. Karataev, A. Oleinik, K. Fedorov, A. Klenin, A. Kubankin, A. Shchagin, Appl. Phys. Exp., 15, 066001 (2022). DOI: 10.35848/1882-0786/ac6b82
  11. A.N. Oleinik, P.V. Karataev, A.A. Klenin, A.S. Kubankin, K.V. Fedorov, A.V. Shchagin, Russ. Phys. J., 63, 119 (2020). DOI: 10.1007/s11182-020-02010-w.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru