Measurement of distance by the maximum frequency of the interference signal with harmonic deviation of the wavelength of the self-mixing laser
Skripal An.V.
1, Добдин C.Ю.
1, Inkin M.G.
1, Dzhafarov A.V.
11Saratov State University, Saratov, Russia
Email: skripalav@info.sgu.ru, sergant1986@yandex.ru
A method is proposed for measuring absolute distances from the low-frequency spectrum of the interference signal of a frequency-modulated laser diode. The method of modulation of the self-mixing laser signal according to the harmonic law is used, in the spectrum of which a wide range of frequency components is observed. The connection between the maximum frequency of change of the interference signal and the absolute distance to the reflector is shown. A linear dependence of the frequency corresponding to the inflection region of the decay envelope of the interference signal spectrum on the distance is shown, which can be used to implement a non-contact distance measurement method with harmonic modulation of the self-mixing laser supply current. Keywords: laser interferometry, self-mixing laser, semiconductor laser, laser radiation modulation, distance measurement, signal spectral analysis.
- A.P. Napartovich, A.G. Sukharev. Kvant. elektron., 34 (7), 630 (2004) (in Russian). V.Ya. Noskov, S.M. Smolsky. Radiotekhnika, 8, 91 (2013)
- H. Wang, Y. Ruan, Y. Yu, Q. Guo, J. Xi,, J. Tong. IEEE Access, 8, 123253 (2020). DOI: 10.1109/ACCESS.2020.3007516
- M.C. Amann, T. Bosch, M. Lescure, R. Myllyla, M. Rioux. Opt. Engineer., 40 (1), 10 (2001). DOI: 10.1117/1.1330700
- M. Norgia, A. Magnani, A. Pesatori. Rev. Sci. Instrum., 83 (4), 045113 (2012). DOI: 10.1063/1.3703311
- K. Ke, K. Kou, X. Li, L. Li, H. Xiang. Appl. Opt., 53 (27), 6280 (2014). DOI: 10.1364/AO.53.006280
- Z. Zhang, C. Li, Z. Huang. Opti. Commun., 436, 192 (2019). DOI: 10.1016/j.optcom.2018.12.032
- S. Donati. Laser Photon., 6 (3), 393 (2012). DOI: 10.1002/lpor.201100002
- S. Donati. Proceed. SPIE, 10150, 101501I (2016). DOI: 10.1117/12.2248912
- J. Chen, X. Wang, Y. Wu, Y. Yang, M. Qiu, M. Wang, Y. Li. Appl. Opt.,61, 4687 (2022). DOI: 10.1364/AO.455671
- F.F. Mul, M.H. Koelink, A.L. Weijers, J. Greve, J.G. Aarnoudse, R. Graaff, A.C.M. Dassel. Appl. Opt., 31 (27), 5844 (1992). DOI: 10.1364/AO.31.005844
- K. Meigas, H. Hinrikus, R. Kattai, J. Lass. J. Biomed. Opt., 8 (1), 152 (2003). DOI: 10.1117/1.1528949
- S.K. Ozdemir, S. Takamiya, S. Ito, S. Shinohara, H. Yoshida. IEEE Transactions on Instrument. Measurement, 49 (5), 1029 (2000). DOI: 10.1109/19.872925
- Z. Dong, X. Sun, W. Liu, H. Yang. Sensors, 18 (10), 3527 (2018). DOI: 10.3390/s18103527
- T. Wu, Y. Hui, Z. Yan, Z. Li, Q. Li. Opt. Laser Technol., 89, 196 (2017). DOI: 10.1016/j.optlastec.2016.09.034
- A.V. Skripal, S.Yu. Dobdin, A.V. Jafarov, K.A. Sadchikova, V.B. Feklistov. Izvestiya Saratovskogo universiteta Novaya seriya. Seriya: Fizika, 20 (2), 84 (2020) (in Russian). DOI: 10.18500/1817-3020-2020-20-2-84-91
- D.A. Usanov, A.V. Skripal, S.Yu. Dobdin, A.V. Jafarov, I.S. Sokolenko. Komp'yuternaya optika, 43 (5), 797 (2019) (in Russian). DOI: 10.18287/2412-6179-2019-43-5-796-802 D.A. Usanov, A.V. Skripal, S.Yu. Dobdin, E.I. Astakhov, I.Yu. Kostyuchenko, A.V. Jafarov. Izvestiya Saratovskogo universiteta Novaya seriya. Seriya: Fizika, 18 (3), 189 (2018) (in Russian)
- H. Olesen, J. H. Osmundsen, B. Tromborg. IEEE J. Quantum Electron., 22 (6), 762 (1986). DOI: 10.1109/JQE.1986.1073061
- N. Schunk, K. Petermann. IEEE J. Quantum Electron, 24 (7), 1242 (1988). DOI: 10.1109/3.960
- V.Ya. Noskov, S.M. Smolsky, K.A. Ignatkov, A.P. Chupakhin. Ural'skiy radiotekhnicheskiy zhurnal, 3 (1), 7 (2019). DOI: 10.15826/urej.2019.3.1.001
- G. Giuliani, M. Norgia, S. Donati, T. Bosch. J. Opt. A: Pure Appl. Opt., 4, 283 (2002). DOI: 10.1088/1464-4258/4/6/371
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.