Diffraction mathematical model of a laser speckle interferometer of transverse displacements of a scattering object
Maksimova L.A.1, Mysina N.Y.1, Patrushev B.A.1,2, Ryabukho V.P.1,2
1Institute of Precision Mechanics and Control Separate structural subdivision of the Federal State Budgetary Institution of Science of the Federal Research Center "Saratov Scientific Center of the Russian Academy of Sciences", Saratov, Russia
2Saratov State University, Saratov, Russia
On the basis of diffraction transformations of wave fields, a mathematical model of a speckle interferometer of transverse displacements of a scattering object has been developed and numerical modeling of speckle-modulated interference patterns and signals at the output of the interferometer has been performed. Numerical calculations of the spatial distribution of complex amplitudes of wave fields in an interferometer were used for modeling when the displaced scattering surface was illuminated by two obliquely incident laser Gaussian beams. A statistical numerical experiment was performed to determine the measurement error of the scattering surface displacement caused by the change of realizations of interfering speckle fields. The simulation results are in good agreement with the results of experimental studies of transverse displacements in the range up to 600 micrometers. Keywords: interferometry, diffraction, interference, laser interferometer, speckle interferometry, interference pattern, speckle modulation, computer simulation.
- J.W. Goodman. Speckle Phenomena in Optics: Theory and Applications (SPIE PRESS, Washington, 2020)
- M. Fran con. La Granularute Laser (Spekle) et Ses Applications en Optique (Masson, Paris, 1978)
- H.J. Rabal, R.A. Braga (ed.). Dynamic Laser Speckle and Applications (CRC Press, Taylor and Francis Group, NY., 2009)
- W. Osten (ed.). Optical Inspection of Microsystems (CRC Press, Taylor and Francis Group, NY., 2007)
- P. Jacquot. Strain, 44 (1), 57 (2008). DOI: 10.1111/j.1475-1305.2008.00372.x
- R. Jones, C. Wykes. Holographic and Speckle Interferometry (Cambridge University Press, 1989)
- Razumovskii I.A. Interferentsionno-opticheskiye metody mekhaniki deformiruyemogo tverdogo tela (Izd-vo MGTU, M., 2007) (in Russian)
- Klimenko I.S. Golografiya sfokusirovannykh izobrazheniy i spekl-interferometriya (Nauka, M., 1985) (in Russian)
- A. Donges, R. Noll. Laser Measurement Technology (Springer, Berlin, 2015), v. 188
- C. Joenathan, R.S. Sirohi, A. Bernal. The Optics Encyclopedia. Advances in Speckle Metrology (Wiley, New Jersey, 2015). DOI: 10.1002/9783527600441.oe087.pub2
- A.P. Vladimirov. Opt. Eng., 55 (12), 121727 (2016). DOI: 10.1117/1.oe.55.12.121727
- Kulchin Yu.N. Vitrik O.B., Kamshilin A.A., Romashko R.V. Adaptivnyye metody obrabotki spekl-modulirovannykh opticheskikh poley (Fizmatlit, M., 2009) (in Russian)
- A. Boutier. Laser Velocimetry in Fluid Mechanics (Wiley, London, 2013)
- A.P. Vladimirov, V.I. Mikushin, A.L. Lisin. Tech. Phys. Lett., 25 (12), 1008 (1999). DOI: 10.1134/1.1262710
- J. Stempin, A. Tausendfreund, D. Stobener, A. Fischer. Nanomanuf. Metrol., 4, 237 (2021). DOI: 10.1007/s41871-020-00093-0
- Y. Arai. Opt. Eng., 54 (2), 024102 (2015). DOI: 10.1117/1.OE.54.2.024102
- K. Zhu, B. Guo, Y. Lu, S. Zhang, Y. Tan. Optica, 4 (7), 729 (2017). DOI: 10.1364/OPTICA.4.000729
- L.P. Tendela, G.E. Galizzi. Opt. Lasers Eng., 110, 149 (2018). DOI: 10.1016/j.optlaseng.2018.05.023
- H.-L. Hsieh, P.-C. Kuo. Opt. Exp., 28 (1), 724 (2020). DOI: 10.1364/OE.382494
- P. de Groot, X. Colonna de Lega, J. Kramer, M. Turzhitsky. Appl. Opt., 43 (25), 4821 (2004). DOI: 10.1364/AO.43.004821
- T. Pahl, S. Hagemeier, M. Kunne, D. Yang, P. Lehmann. Opt. Exp., 28 (28), 39807 (2020). DOI: 10.1364/OE.411167
- P.J. de Groot, X. Colonna de Lega. J. Opt. Soc. Am. A, 37 (9), B1 (2020). DOI: 10.1364/JOSAA.390746
- D.V. Lyakin, L.A. Maksimova, V.P. Ryabukho. Opt. Spectr., 127, 571 (2019). DOI: 10.1134/S0030400X19090170
- G.N. Vishnyakov, A.D. Ivanov, G.G. Levin, V.L. Minaev. Quant. Electr., 50 (7), 636 (2020). DOI: 10.1070/QEL17281
- Grizbil B.A., Maksimova L.A., Ryabukho V.P. Komp. opt., 44 (4), 568 (2020) (in Russian). DOI: 10.18287/2412-6179-CO-702
- D.J. Burrell, M.F. Spencer, N.R. Van Zandt, R.G. Driggers. Appl. Opt., 60 (25), G64 (2021). DOI: 10.1364/AO.427963
- Dubnishchev Yu.N., Rinkevichius B.S. Metody lazernoy doplerovskoy anemometrii (Nauka, M., 1982) (in Russian)
- Rinkevichius B.S. Lazernaya diagnostika potokov (Izd-vo MEI, M., 1990) (iIn Russian)
- Dubnishchev Yu.N. Lazernyye doplerovskiye izmeritel'nyye tekhnologii (NGTU, Novosibirsk, 2002) (in Russian)
- Y.N. Dubnishchev, T.Y. Dubnishcheva, V.G. Nechaev. Optoelectronics, Instrumentation and Data Processing, 56 (4), 333 (2020). DOI: 10.3103/S8756699020040056
- A. Boutier. Laser Velocimetry in Fluid Mechanics (Wiley, London, 2013)
- Meledin V.G. Interekspo Geo-Sibir, 2 (5), 141 (2018) (in Russian)
- Korolenko P.V. Optika kogerentnogo izlucheniya (Izd-vo MGU, M., 1997) (in Russian)
- O. Korotkova. Random Light Beams: Theory and Applications (Boca Raton, FL: CRC Press, 2014)
- J.W. Goodman. Statistical Optics (Wiley, NY., 2000)
- E.C. Ifeachor, B.W. Jarvis. Digital Signal Processing. A Practical Approach. 2nd ed. (Prentice Hall, Pearson Education Limited, 2002)
- M. Born, E. Wolf. Principles of Optics. Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 7th ed. (Cambridge University Press, 1999)
- J.W. Goodman. Introduction to Fourier Optics. 3 ed. (Roberts and Company Publishers, 2005)
- Zhuravlev S.D., Bogachev R.Yu, Rogovin V.I, Petrosyan A.I., Shesterkin V.I., Grizbil B.A., Ryabukho V.P., Zakharov A.A.. Elektronika i mikroelektronika SVCh, 1, 170 (2018) (in Russian)
- Novitsky P.V., Zograph I.A. Otsenka pogreshnostey rezul'tatov izmereniy (Energoatomizdat, L., 1991) (In Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.