Limitation of laser radiation power by carbon materials with a nonlinear optical threshold effect at a flat-top pulse shape
Savelyev M. S. 1,2, Vasilevsky P. N. 1, Shaman Yu. P. 3, Tolbin A. Yu. 4, Gerasimenko A. Yu. 1,5, Selishchev S. V. 1
1Institute of Biomedical Systems, National Research University of Electronic Technology, MIET, Moscow, Zelenograd, Russian Federation
2 Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
3 Scientific-Manufacturing Complex “Technological Centre”, Moscow, Zelenograd, Russia
4 Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, Moscow region, Russia
5Institute for Bionic Technologies and Engineering, Sechenov First Moscow State Medical University, Sechenov University, Moscow, Russia
Email: savelyev@bms.zone, pavelvasilevs@yandex.ru, shaman.yura@gmail.com, tolbin@inbox.ru, gerasimenko@bms.zone, selishchev@bms.zone

PDF
The possibilities of using multivariate determination of carbon nanotubes properties based on the dependence data of the normalized transmission logarithm on the sample displacement in the case of Z-scan with an open aperture as well as on the total pulse energy in the case of fixed sample position measurements are studied. The radiation transfer equation for the threshold dependence of the absorption coefficient on the intensity of a flat-top laser beam is used. The data of physical and computational experiments showed the sensitivity of the measured curves with respect to the values of the constants of the optical and threshold energy fluence, as well as the beam waist radius. The possibility of multivariate determination of the properties of liquid carbon nanotube-based dispersed media with a nonlinear optical threshold effect and beam waist radius inside such samples has been established. Keywords: optical limiting, multivariate analysis, carbon nanotubes, Z-scan
  1. M. Sheik-Bahae, A.A. Said, T.-H. Wei, D.J. Hagan, E.W. Van Stryland. IEEE J. Quantum Electron, 26 (4), 760 (1990). DOI: 10.1109/3.53394
  2. S.A. Tereshchenko, V.M. Podgaetskii, A.Y. Gerasimenko, M.S. Savel'ev. Opt. Spectr., 116 (3), 454 (2014). DOI: 10.1134/S0030400X14030217
  3. S.A. Tereshchenko, M.S. Savelyev, V.M. Podgaetsky, A.Y. Gerasimenko, S.V. Selishchev. J. Appl. Phys., 120 (9), 093109 (2016). DOI: 10.1063/1.4962199
  4. A.A. Said, M. Sheik-Bahae, D.J. Hagan, T.H. Wei, J. Wang, J. Young, E.W. Van Stryland. J. Opt. Soc. Am. B, 9 (3), 405 (1992). DOI: 10.1364/JOSAB.9.000405
  5. G. Rav ciukatis. J. Laser Micro/Nanoengineering, 6 (1), 37 (2011). DOI: 10.2961/jlmn.2011.01.0009
  6. X.G. Huang. Opt. Eng., 38 (2), 208 (1999). DOI: 10.1117/1.602255
  7. G. Zhang, I.W. Primaatmaja, J.Y. Haw, X. Gong, C. Wang, C.C.W. Lim. Quantum Information and Measurement VI 2021 (Washington, D.C., Optica Publishing Group, 2021), p. M2C.6. DOI: 10.1364/QIM.2021.M2C.6
  8. H. Qian, S. Li, Y. Li, C.-F. Chen, W. Chen, S.E. Bopp, Y.-U. Lee, W. Xiong, Z. Liu. Sci. Adv., 6 (20), (2020). DOI: 10.1126/sciadv.aay3456
  9. M. Veisi, S. H. Kazemi, M. Mahmoudi. Sci. Rep., 10 (1), 16304 (2020). DOI: 10.1038/s41598-020-73343-2
  10. H. Fan, X. Wang, Q. Ren, X. Zhao, G. Zhang, J. Chen, D. Xu, G. Yu, Z. Sun. Opt. Laser Technol., 42 (5), 732 (2010). DOI: 10.1016/j.optlastec.2009.11.017
  11. L. Zheng, P. Zhang, J. Tan, F. Li. IEEE Access, 7, 163437 (2019). DOI: 10.1109/ACCESS.2019.2952173
  12. R. Zhou, W. Jiang, S. Jiang. Remote Sens., 10 (12), 2051 (2018). DOI: 10.3390/rs10122051
  13. S. Royo, M. Ballesta-Garcia. Appl. Sci., 9 (19), 4093 (2019). DOI: 10.3390/app9194093
  14. M. Hasan, J. Hanawa, R. Goto, H. Fukuda, Y. Kuno, Y. Kobayashi. IEEJ Trans. Electr. Electron. Eng., 16 (5), 778 (2021). DOI: 10.1002/tee.23358
  15. L. Janowski, R. Wroblewski, M. Rucinska, A. Kubowicz-Grajewska, P. Tysiac. Eng. Geol., 301, 106615 (2022). DOI: 10.1016/j.enggeo.2022.106615
  16. G. Mandlburger, M. Pfennigbauer, R. Schwarz, S. Flory, L. Nussbaumer. Remote Sens., 12 (6), 986 (2020). DOI: 10.3390/rs12060986
  17. S.M. Marselis, K. Abernethy, A. Alonso, J. Armston, T.R. Baker, J. Bastin, J. Bogaert, D.S. Boyd, P. Boeckx, D.F.R.P. Burslem, R. Chazdon, D.B. Clark, D. Coomes, L. Duncanson, S. Hancock, R. Hill, C. Hopkinson, E. Kearsley, J.R. Kellner, D. Kenfack, N. Labriere, S.L. Lewis, D. Minor, H. Memiaghe, A. Monteagudo, R. Nilus, M. O'Brien, O.L. Phillips, J. Poulsen, H. Tang, H. Verbeeck, R. Dubayah. Glob. Ecol. Biogeogr., 29 (10), 1799 (2020). DOI: 10.1111/geb.13158
  18. A.E. Thompson. Remote Sens., 12 (17), 2838 (2020). DOI: 10.3390/rs12172838
  19. J. Shen, N. Cao, Y. Zhao. Optik (Stuttg). 227, 165980 (2021). DOI: 10.1016/j.ijleo.2020.165980
  20. T. Shiina. Ionizing Radiation Effects and Applications, ed. by B. Djezzar (IntechOpen, London, United Kingdom, 2018), p. 186. DOI: 10.5772/intechopen.74630
  21. C. Jiang, Y. Chen, W. Tian, Z. Feng, W. Li, C. Zhou, H. Shao, E. Puttonen, J. Hyyppa. Satell. Navig., 1 (1), 29 (2020). DOI: 10.1186/s43020-020-00029-5
  22. E. Garmire. Opt. Express, 21 (25), 30532 (2013). DOI: 10.1364/OE.21.030532
  23. W.M. Elwekeel, A. Salah, T. Ismail, H. Selmy, M. Alshershby, Y.A. Badr, B. Anis. Opt. Mater. (Amst), 122, 111732 (2021). DOI: 10.1016/j.optmat.2021.111732
  24. B. Schwarz, G. Ritt, M. Koerber, B. Eberle. Opt. Eng., 56 (3), 034108 (2017). DOI: 10.1117/1.OE.56.3.034108
  25. M. Zhang, X. Xu, J. Liu, Y. Jiang, J. Wang, N. Dong, C. Chen, B. Zhu, Y. Liang, T. Fan, J. Xu. ACS Appl. Mater. Interfaces, 14 (29), 33787 (2022). DOI: 10.1021/acsami.2c06476
  26. T.C. Sabari Girisun, M. Saravanan, S. Venugopal Rao. J. Appl. Phys., 124 (19), 193101 (2018). DOI: 10.1063/1.5050478
  27. Y. Chen, Y. Lin, Y. Liu, J. Doyle, N. He, X. Zhuang, J. Bai, W.J. Blau. J. Nanosci. Nanotechnol., 7 (4), 1268 (2007). DOI: 10.1166/jnn.2007.308
  28. K.C. Chin, A. Gohel, H.I. Elim, W. Chen, W. Ji, G.L. Chong, C.H. Sow, A.T.S. Wee. J. Mater. Res., 21 (11), 2758 (2006). DOI: 10.1557/jmr.2006.0338
  29. L. Vivien, D. Riehl, P. Lan con, F. Hache, E. Anglaret. Opt. Lett., 26 (4), 223 (2001). DOI: 10.1364/OL.26.000223
  30. M.S. Savelyev, A.Y. Gerasimenko, V.M. Podgaetskii, S.A. Tereshchenko, S.V. Selishchev, A.Y. Tolbin. Opt. Laser Technol., 117, 272 (2019). DOI: 10.1016/j.optlastec.2019.04.036
  31. F.H. Alkallas, H.A. Ahmed, R. Adel Pashameah, S.H. Alrefaee, A. Toghan, A. Ben Gouider Trabelsi, A.M. Mostafa. Opt. Laser Technol., 155, 108444 (2022). DOI: 10.1016/j.optlastec.2022.108444
  32. T.A. Alrebdi, H.A. Ahmed, F.H. Alkallas, E.A. Mwafy, A.B.G. Trabelsi, A.M. Mostafa. Radiat. Phys. Chem., 195, 110088 (2022). DOI: 10.1016/j.radphyschem.2022.110088
  33. A. Wang, L. Cheng, W. Zhao, W. Zhu, D. Shang. Dye. Pigment., 161, 155 (2019). DOI: 10.1016/j.dyepig.2018.09.057
  34. B.I. Kharisov, O.V. Kharissova, H. Leija Gutierrez, U. Ortiz Mendez. Ind. Eng. Chem. Res., 48 (2), 572 (2009). DOI: 10.1021/ie800694f
  35. D. Bouchard, X. Chang, I. Chowdhury. Environ. Nanotechnology, Monit. Manag., 4, 42 (2015). DOI: 10.1016/j.enmm.2015.07.001
  36. M. Davoodabadi, M. Liebscher, S. Hampel, M. Sgarzi, A.B. Rezaie, D. Wolf, G. Cuniberti, V. Mechtcherine, J. Yang, Compos. Part B Eng., 209, 108559 (2021). DOI: 10.1016/j.compositesb.2020.108559
  37. R. Rastogi, R. Kaushal, S.K. Tripathi, A.L. Sharma, I. Kaur, L.M. Bharadwaj. J. Colloid Interface Sci., 328 (2), 421 (2008). DOI: 10.1016/j.jcis.2008.09.015
  38. Yu.N. Tolchkov, T.I. Panina, Z.A. Mikhaleva, E.V. Galunin, N.R. Memetov, A.G. Tkachev. Khimicheskaya fizika i mezoskopiya, 19 (2), 292 (2017) (in Russian)
  39. O.S. Zueva, O.N. Makshakova, B.Z. Idiyatullin, D.A. Faizullin, N.N. Benevolenskaya, A.O. Borovskaya, E.A. Sharipova, Yu.N. Osin, V.V. Salnikov, Yu.F. Zuev. Izvestiya AN, seriya khimicheskaya 5,1208 (2016) (in Russian)
  40. M.S. Savelyev, A.Y. Gerasimenko, P.N. Vasilevsky, Y.O. Fedorova, T. Groth, G.N. Ten, D.V. Telyshev. Anal. Biochem., 598, 113710 (2020). DOI: 10.1016/j.ab.2020.113710
  41. L.W. Tutt, T.F. Boggess. Prog. Quantum Electron., 17 (4), 299 (1993). DOI: 10.1016/0079-6727(93)90004-S
  42. Q. Zhang, Y. Qiu, F. Lin, C. Niu, X. Zhou, Z. Liu, M.K. Alam, S. Dai, W. Zhang, J. Hu, Z. Wang, J. Bao. Nanoscale, 12 (13), 7109 (2020). DOI: 10.1039/C9NR10516F

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru