Acceleration of chemical processes in aerosol
Fedoseev V. B. 1
1Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: vbfedoseev@yandex.ru

PDF
The evolution of the state of aerosol droplets containing a reaction mixture with volatile components is accompanied by a change in the size and composition of the droplets, changes in the concentrations of reagents and the rates of chemical reactions. The methods of formal chemical kinetics and equilibrium thermodynamics describe size effects that lead to a significant acceleration of chemical processes in aerosols. The dependence of the rate of chemical processes on the initial size and composition of droplets, as well as on the composition of the gas phase, is described. The main regularities are modeled on the example of the condensation reaction of glycine with glucose (Maillard reaction). Keywords: aerosol, size effect, chemical kinetics, spray technology.
  1. Y. Lu, C. Kacica, S. Bansal, L.M. Santino, S. Acharya, J. Hu, C. Izima, K. Chrulski, Y. Diao, H. Wang, H. Yang, P. Biswas, J. Schaefer, J.M. D'Arcy, ACS Appl. Mater. Interfaces, 11 (50), 47320 (2019). DOI: 10.1021/acsami.9b15625
  2. P. Walzel, A. Mescher, J. Kamplade, in Process-spray, ed. by U. Fritsching (Springer, Cham, 2016), ch. 22. DOI: 10.1007/978-3-319-32370-1_22
  3. E.N. Fedoseeva, V.B. Fedoseev, Condensed matter and interphases, 22 (3), 397 (2020). DOI: 10.17308/kcmf.2020.22/3001
  4. J.K. Lee, K.L. Walker, H.S. Han, J. Kang, F.B. Prinz, R.M. Waymouth, H.G. Nam, R.N. Zare, Proc. Natl. Acad. Sci., 116 (39), 19294 (2019). DOI: 10.1073/pnas.1911883116
  5. V.B. Fedoseev, E.N. Fedoseeva, Condensed matter and interphases, 24 (1), 101 (2022). DOI: 10.17308/kcmf.2022.24/9060
  6. J. Leng, Z. Wang, J. Wang, H.H. Wu, G. Yan, X. Li, H. Guo, Y. Liu, Q. Zhang, Z. Guo, Chem. Soc. Rev., 48 (11), 3015 (2019). DOI: 10.1039/c8cs00904j
  7. N. Suvarli, I. Perner-Nochta, J. Hubbuch, M. Worner, Polymers, 13 (24), 4363 (2021). DOI: 10.3390/polym13244363
  8. R.E. Partch, K. Nakamura, K.J. Wolfe, E. Matijevic, J. Colloid Interface Sci., 105 (2), 560 (1985). DOI: 10.1016/0021-9797(85)90331-5
  9. P. Corral Arroyo, G. David, P.A. Alpert, E.A. Parmentier, M. Ammann, R. Signorell, Science, 376 (6590), 293 (2022). DOI: 10.1126/science.abm7915
  10. V.B. Fedoseev, E.N. Fedoseeva, J. Eng. Phys. Thermophys., 93 (5), 1116 (2020). DOI: 10.1007/s10891-020-02212-6
  11. A.I. Rusanov, Colloid J., 74 (2), 136 (2012). DOI: 10.1134/S1061933X1202010X
  12. C.G.A. Davies, B.L. Wedzicha, C. Gillard, Food Chem., 60 (3), 323 (1997). DOI: 10.1016/S0308-8146(96)00338-X
  13. V.B. Fedoseev, M.V. Maksimov, JETP Lett., 101 (6), 390 (2015). DOI: 10.1134/S0021364015060053
  14. E.N. Fedoseeva, V.B. Fedoseev, Izv. Kabard.-Balkar. Gos. Univ., 12 (3), 99 (2022) (in Russian). https://izvestija_kbgu_-3-2022.pdf

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru