Photosensitivity of a metal-insulator-semiconductor field-effect transistor based on PbSnTe:In film with a composition close to the bands inversion
Klimov A. E.
1,2, Akhundov I. O.
1, Golyashov V. A.
1,3, Gorshkov D. V.
1, Ishchenko D. V.
1, Sidorov G. Yu.
1, Pashchin N. S.
1, Suprun S. P.
1, Tarasov A. S.
1, Fedosenko E. V.
1, Tereshchenko O. E.
1,31Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State Technical University, Novosibirsk, Russia
3Novosibirsk State University, Novosibirsk, Russia
Email: klimov@isp.nsc.ru, akhundov@isp.nsc.ru, golyashov@isp.nsc.ru, gorshkovdv@isp.nsc.ru, ischenkod@isp.nsc.ru, George@isp.nsc.ru, paschin@isp.nsc.ru, suprun@isp.nsc.ru, tarasov1916@yandex.ru, fedos3000@gmail.com, oleg.tereshchenko11@gmail.com
A prototype of a metal-insulator-semiconductor field-effect transistor based on PbSnTe:In/(111)BaF2 film with an Al2O3 gate dielectric was designed for the first time. With the gate voltage applied in the range -7.7<Ugate< +7.7 V the relative modulation in the drain-source current Delta Ids/Ids attained near five-fold change at T = 4.2 K. When illuminated with relatively low (~ 100 photon/s) fluxes, negative photoconductivity was detected accompanied with a decrease in Ids by ~ 104 times and a simultaneous decrease in Delta Ids by ~ 103 times or even more. The estimated detectivity was about ~ 7· 1016 cm·Hz0.5· W-1 at a wavelength λ about 25 micron with the accumulation time about 0.5 s. A qualitative model is discussed which assumes the existence of deep traps and a photo-capacitance effect. Keywords: Epitaxial films, PbSnTe:In, MIS-transistor, negative photoconductivity, detector of radiation.
- Yu.I. Ravich, B.A. Efimova, I.A. Smirnov, Metody issledovaniya poluprovodnikov v primenenii k khal'kogenidam svintsa PbTe, PbSe i PbS (Nauka, M., 1968) (in Russian)
- G. Springholz, Molecular beam epitaxy. From research to mass production, 2nd ed. (Elsevier, Netherlands, 2018), p. 211--276, 233--236
- A. Rogalski, Infrared and terahertz detectors, 3rd ed. (CRC Press, Boca Raton, 2019), p. 527--578, 936, 981, 999
- B.A. Volkov, L.I. Ryabova, D.R. Khokhlov, Phys. Usp., 45 (8), 819 (2002). DOI: 10.1070/PU2002v045n08ABEH001146
- D.A. Lilly, D.E. Joslin, H.K.A. Kan, Inf. Phys., 18 (1), 51 (1978). DOI: 10.1016/0020-0891(78)90010-6
- P.H. Zimmermann, M.E. Mathews, D.E. Joslin, J. Appl. Phys., 50, 5815 (1979). DOI: 10.1063/1.326725
- B.M. Vul, I.D. Voronova, G.A. Kalyuzhnaya, T.S. Mamedov, T.Sh. Ragimova, JETP Lett., 29 (1), 18 (1979)
- A.E. Klimov, V.A. Golyashov, D.V. Gorshkov, E.V. Matyushenko, I.G. Neizvestny, G.Yu. Sidorov, N.S. Paschin, S.P. Suprun, O.E. Tereshchenko, Semiconductors, 56 (2), 182 (2022). DOI: 10.21883/SC.2022.02.53273.30
- A.E. Klimov, A.Yu. Mironov, I.O. Akhundov, V.A. Golyashov, D.V. Gorshkov, D.V. Ishchenko, N.S. Pashchin, G.Yu. Sidorov, S.P. Suprun, A.S. Tarasov, E.V. Fedosenko, O.E. Tereshchenko, in Sbornik tezisov dokladov XV Rossiiskoi konferentsii po fizike poluprovodnikov (Nizhnii Novgorod, 2022), p. 67 (in Russian). https://semicond2022.ru/file/29/b86bdcf0/abstracts.pdf
- A.N. Akimov, A.E. Klimov, S.V. Morozov, S.P. Suprun, V.S. Epov, A.V. Ikonnikov, M.A. Fadeev, V.V. Rumyantsev, Semiconductors, 50 (12), 1684 (2016). DOI: 10.1134/S1063782616120022
- R.A. Hopfel, Appl. Phys. Lett., 52 (10), 801 (1988). DOI: 10.1063/1.99288
- A.E. Klimov, V.N. Shumskii, Prikl. Fiz., No. 3, 74 (2004) (in Russian)
- A.E. Kozhanov, A.V. Nikorich, L.I. Ryabova, D.R. Khokhlov, Semiconductors, 40 (9), 1021 (2006). DOI: 10.1134/S1063782606090053
- A.G. Klimenko, A.E. Klimov, I.G. Neizvestny, A.A. Fratsuzov, V.N. Shumsky, in Narrow gap semiconductors, ed. by S.C. Shen, D.V. Tang, G.V. Zheng, G. Bauer (World Scientific, 1997), p. 164.
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.