Limiting thickness of pore walls formed in processes of anode etching of heavily doped semiconductors
Zegrya G. G.1, Ulin V. P.1, Zegrya A. G.1, Freiman V. M.1, Ulin N. V.1, Fadeev D. V.2, Savenkov G. G.1,3
1Ioffe Institute, St. Petersburg, Russia
2JSC “Murom apparatus producing plant”, Murom, Vladimir region, Russia
3Saint-Petersburg State Institute of Technology (Technical University), St. Petersburg, Russia

With a decrease in the thickness of the walls separating the space of pores in porous semiconductors, the potential energy of interaction between an electron and a donor (or a hole and an acceptor) can become greater than the kinetic energy of a free charge carrier. As a consequence, such interlayers lose their conductivity and transit into the dielectric state (Mott phase transition). With regard to the conditions of electrochemical pore formation, this means that as the pore channels approach each other during anodic etching to a distance at which the current flow through the wall that separates them stops, the potential of its surface ceases to be determined by the external electric bias and the electrochemical process, that leads to a further decrease in the thickness of such a wall, stops. Expressions are obtained for the limiting thickness of the walls of pores formed in degenerate semiconductors of n- and p-type conductivity. In contrast to the well-known model that relates the loss of conductivity by pore walls to the combination of space charge layers, the proposed model allows a consistent explanation for the experimental data for both n- and p-type silicon with doping levels above 1018 cm-3. Keywords: thickness limitation, pore formation, silicon, donor, acceptor.
  1. X.G. Zhang. Electrochemistry of Silicon and Its Oxide (Kluwer Academic Publishers NY., Boston-Dordrecht-London-Moscow,, 2004)
  2. Ed. byG. Korotcenkov. Porous Silicon. From Formation to Aplication (CRC Press, 2020), v. 1, 440 p
  3. L. Santinacci, T. Djenizian. Comptes Rendus Chimie, 11 (9), 964 (2008).
  4. V. Parkhutik, Sol. St. El., 43, 1121 (1999)
  5. J.-N. Chazalviel, R.B. Wehrspohn, F. Ozanam. Mater. Sci. Eng. B, 69-70, 1 (2000)
  6. V. Lehmann, R. Stengl, A. Luigart. Mater. Sci. Eng. B, 69, 11 (2000)
  7. K.W. Kolasinski. Surf. Sci., 603, 1904 (2009). DOI:10.1016/j.susc.2008.08.031
  8. H. Foll, M. Christophersen, J. Carstensen, G. Hasse. Mater. Sci. Eng., R39, 93-141 (2002)
  9. P.M. Fauchet, J. von Behren. Phys. Stat. Sol. (b), 204, R7 (1997)
  10. A.G. Cullis, L.T. Canham, P.D.J. Calcott, J. Appl. Phys., 82, 909 (1997)
  11. D. Kovalev, V.Y. Timoshenko, N. Kunzner, E. Gross, F. Koch. Phys. Rev. Lett., 87 (6), 068301/1 (2001)
  12. Yu.Ya. Gurevich, Yu.Ya. Pleskov. Fotoelektrokhimiya poluprovodnikov (Nauka, M., 1983) (in Russian)
  13. G.S. Higashi, Y.J. Chabal, G.W. Trucks, K. Raghavachari. Appl. Phys. Lett., 56, 656 (1990)
  14. V.P. Ulin, S.G. Konnikov. FTP, 41 (7), 854, 867 (2007) (in Russian)
  15. V.P. Ulin, N.V. Ulin, and F.Yu. Soldatenkov, FTP, 51, 481 (2017). (in Russian)
  16. V.M. Freiman, G.G. Zegrya, V.P. Ulin, A.G. Zegrya, N.V. Ulin, Yu.M. Mikhailov. ZhTF, 89 (10), 1575 (2019) (in Russian). DOI: 10.21883/TP.2023.02.55482.224-22
  17. G.G. Zegrya, V.I. Perel. Osnovy fiziki poluprovodnikov (Fizmatlit, M., 2009) (in Russian)
  18. B.I. Shklovsky, A.L. Efros. Elektronnye svojstva sil'nolegirovannykh poluprovodnikov (Fizmatlit, Moscow, 1979) (in Russian)
  19. V.F. Gantmakher. Elektrony v neuporyadichennykh sredakh (Fizmatlit, Moscow, 2003) (in Russian)
  20. New Semiconductor Materials. Biology systems. Characteristics and Properties.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245