Physical processes in the Pirani type low vacuum sensor
Rut’kov E. V.1, O.A. Beliaeva2, Gall N. R.1
1Ioffe Institute, St. Petersburg, Russia
2TECHNAN LTD, St. Petersburg, Russia
Email: rutkov@ms.ioffe.ru, Olgabell@yandex.ru, gall@ms.ioffe.ru

PDF
Auger electron spectroscopy and thermoresistive methods are used to study the physical processes leading to gas cooling of heated molybdenum filaments in a wide temperature range of 350-1300 K and pressures of 760-10-3 Torr, corresponding to the operating range of a Pirani-type vacuum sensor. Nitrogen was used as the gas. It is shown that nitrogen atoms chemisorbed on the surface do not contribute to gas cooling, which occurs only due to physisorbed N2 molecules. In the intermediate vacuum region of 10-3-1 Torr, the heater is cooled due to the equilibrium between the flux of incident and thermally desorbed molecules, which is well described by the Hertz-Knudsen formula and first-order desorption with an activation energy of ~0.55 eV. On the contrary, at high pressures close to atmospheric, this cooling occurs due to the thermal desorption of gas molecules from an almost filled monolayer, which reduces its relative efficiency by many orders of magnitude. Keywords: vacuum, adsorption, Pirani sensor, molybdenum, thermal desorption, nitrogen.
  1. A. Berman. Total Pressure Measurements in Vacuum Technology (Academic Press, 1985), Ch. 4.3
  2. K. Jousten (editor). Handbook of Vacuum technology, 2nd ed. (Wiley-VCH, Weinheim, 016), Ch. 13.5
  3. N.V. Cherepnin. Sorbtsionnye yavleniya v vakuumnoj tekhnike (Sov. radio, M., 1973) (in Russian)
  4. W. Jitschin, S. Ludwig. Vakuum in Forschung und Praxis, 16 (1), 23 (2004)
  5. E.S. Topalli, K. Topalli, S.E. Alper, T. Serin, T. Akin. IEEE Sensors J., 9 (3), 263 (2009). DOI: 10.1109/JSEN.2008.2012200
  6. J. Chae, J.M. Giachino, K. Najafi. J. Microelectromech. Syst., 17 (1), 193 (2008). DOI: 10.1109/JMEMS.2007.910258
  7. D. Sparks, N. Najafi, S. Ansari. IEEE Trans. Adv. Packag., 26 (3), 277 (2003). DOI: 10.1109/TADVP.2003.817964
  8. Y. Cheng, W. Hsu, K. Najafi, C.T. Nguyen, L. Lin. J. Microelectromech. Syst., 11 (5), 556 (2002). DOI: 10.1109/JMEMS.2002.802903
  9. K. Fura, V.G. Lifshits, A.A. Saranin, A.V. Zotov, K. Katayama. Vvedenie v fiziku poverkhnosti (M., Nauka, 2006), (in Russian)
  10. A.M. Prokhorov (ed.). Fizicheskaya entsiklopediya (Sov. entsiklopediya, M., 1988) (in Russian)
  11. N.A. Vorona, A.V. Gavrikov. Sovremennye sredstva polucheniya i izmereniya vakuuma. Laboratornaya rabota N 2.3.1B (kr. opisanie) (MFTI, M., 2019), 2-e izd. (in Russian)
  12. N.R. Gall, E.V. Rut`kov, A.Y. Tontegode. Tech. Phys., 47 (4), 484 (2002). DOI: http://dx.doi.org/10.1134/1.1470600
  13. L.E. Davis, N.C. MacDonald, P.W. Palmberg, G.E. Riach, R.E. Weber. Handbook of Auger Electron Spectroscopy, 2nd ed. (Physical Electronics Division, Perkin-Elmer Corporation, Eden Prairie, USA, 1978)
  14. W. Espe, Tekhnologiya elektrovakuumnykh materialov (GEI, M., 1962), t. 1. (in Russian)
  15. M. Roberts, Ch. Makki. Khimiya poverkhnosti razdela metall--gaz (Mir, M., 1981) (in Russian)
  16. I. Tovoshima, G.A. Somorjai. Catalysis Reviews. Sci. Engineer., 19 (1), 105 (1979). DOI: 10.1080/03602457908065102
  17. I.I. Kornilov, V.V. Glazova. Dzaimodejstvie tugoplavkikh metallov perehodnykh grupp s kislorodom (Nauka, M., 1967) (in Russian)
  18. N.R. Gall, E.V. Rutkov, A.Ya. Tontegode, G.L. Plekhotkina. Poverkhnost', 3, 37 (2000). (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru