Synthesis of arrays nanostructured porous silicon wires in electron conductivity type silicon with crystallographic orientation (111)
Gagarina A.Yu.1, Bogoslovskaya L.S.1, Spivak Yu. M.1, Novikova K.N., Kuznetsov A.1, Moshnikov V.A.1
1St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
Email: gagarina.au@gmail.com

PDF
The method of modified metal-assisted electrochemical etching was proposed and arrays of nanostructured porous silicon wires on n-type monocrystalline silicon substrate with crystallographic orientation (111) were obtained. The influence of the electrolyte composition at the second stage of obtaining on the morphology of silicon wires by scanning electron microscopy methods was revealed. The phase composition of porous silicon wires was controlled by Raman spectroscopy. Keywords: Porous silicon,porous Silicon nanowires, MACE, Nanomaterials, Raman spectroscopy.
  1. S. Chen, Y. Tang, K. Zhan, D. Sun, X. Hou. Nano Today, 20, 84-100 (2018). DOI: 10.1016/j.nantod.2018.04.006
  2. O. v Zukovskaja, S. Agafilushkina, V. Sivakov, K. Weber, D. Cialla-May, L. Osminkina, J. Popp. J. Talanta, 202, 171-177 (2019). DOI: 10.1016/j.talanta.2019.04.047
  3. M.B. Gongalsky, U.A. Tsurikova, J.V. Samsonova, G.Z. Gvindzhiliiia, K.A. Gonchar, N.Y. Saushkin, A.A. Kudryavtsev, E.A. Kropotkina, A.S. Gambaryan, L.A. Osminkina. Res. Mater., 6, 100084 (2020). DOI: 10.1016/j.rinma.2020.100084
  4. A.D. Kartashova, K.A. Gonchar, D.A. Chermoshentsev, E.A. Alekseeva, M.B. Gongalsky, I.V. Bozhev, A.A. Eliseev, S.A. Dyakov, J.V. Samsonova, L.A. Osminkina. ACS Biomater. Sci. Eng., 8 (10), 4175-4184 (2022). DOI: 10.1021/acsbiomaterials.1c00728
  5. Y. Qin, Y. Wang, Y. Liu, Y.J. Mater. Sci. Mater. Electron., 27 (11), 11319-11324 (2016). DOI: 10.1007/s10854-016-5255-1
  6. Y. Wang, M. Hu, Z. Wang, X. Liu, L. Yuan. Mater. Sci. Semicond. Process., 56, 307-312 (2016). DOI: 10.1016/j.mssp.2016.09.002
  7. L. Pichon, A.C. Salaun, G. Wenga, R. Rogel, E. Jacques. Procedia Eng., 87, 1003-1006 (2014). DOI: 10.1016/j.proeng.2014.11.329
  8. L. Pichon, R. Rogel, E. Jacques, A.C. Salaun. Phys. Status Solidi, 11, 344-348 (2014). DOI: 10.1002/pssc.201300206
  9. G. Otnes, M.T. Borgstrom. Nano Today, 12, 31-45 (2017). DOI: 10.1016/j.nantod.2016.10.007
  10. G.Y. Abdel-Latif, M.F.O. Hameed, M. Hussein, M.A. Razzak, S.S.A. Obayya. J. Photon. Energy, 7 (4), 047501 (2017). DOI: 10.1117/1.JPE.7.047501
  11. F.M. Korany, M.F.O. Hameed, M. Hussein, R. Mubarak, M.I. Eladawy, S.S.A. Obayya, J. Nanophoton., 12 (1), 016019 (2018). DOI: 10.1117/1.JNP.12.016019
  12. D. Korolev, V. Postnov, I. Aleksandrov, I. Murin. Biomolecules, 11 (10), 1544 (2021). DOI: 10.3390/biom11101544
  13. Yu.M. Spivak, A.O. Belorus, A.A. Panevin, S.G. Zhuravsky, V.A. Moshnikov, K. Bespalova, P.A. Somov, Yu.M. Zhukov, A.S. Komolov, L.V. Chistyakova, N.Yu. Grigorieva. ZhTF 88, 9 (1394) (1403) (in Russian). DOI: 10.21883/JTF.2018.09.46427.57-18
  14. M. Lv, S. Su, Y. He, Q. Huang, W. Hu, D. Li, C. Fan, S.T. Lee. Adv. Mater., 22 (48), 5463-5467 (2010). DOI: 10.1002/adma.201001934
  15. M.B. Rabha, L. Khezami, A.B. Jemai, R. Alhathlool, A. Ajbar. J. Cryst. Growth, 462, 35-40 (2017). DOI: 10.1016/j.jcrysgro.2017.01.021
  16. S. Li, W. Ma, X. Chen, K. Xie, Y. Li, X. He, X. Yang, Y. Lei. Appl. Surf. Sci., 369, 232-240 (2016). DOI: 10.1016/j.apsusc.2016.02.028
  17. M. Jeon, K. Kamisako. Mater. Lett., 63 (9-10), 777-779 (2009). DOI: 10.1016/j.matlet.2009.01.001
  18. Y. Chen, Z. Guo, J. Xu, L. Shi, J. Li, Y. Zhang. Mater. Res. Bull., 47 (7), 1687-1692 (2012). DOI: 10.1016/j.materresbull.2012.03.049
  19. R. Blossey. Nature Mater., 2 (5), 301-306 (2003). DOI: 10.1038/nmat856
  20. L. Canham. Handbook of Porous Silicon (Springer International Publishing, Berlin, 2014)
  21. Y.M. Spivak, A.O. Belorus, P.A. Somov, S.S. Tulenin, K.A. Bespalova, V.A. Moshnikov. J. Phys. Conf. Ser. 643, 012022 (2015). DOI: 10.1088/1742-6596/643/1/012022
  22. Yu.M. Spivak, K.A. Bespalova, A.O. Belorus, A.A. Panevin, P.A. Somov, N.Yu. Grigorieva, L.V. Chistyakova, S.G. Zhuravsky, V.A. Moshnikov. Biotekhnosfera, 51, 69 (75) (in Russian). DOI: 10.21883/JTF.2018.09.46427.57-18
  23. Y. Spivak. Proc. of the 2018 IEEE International Conference on Electrical Engineering and Photonics (St. Petersburg, Russia, 2018), p. 244-248. DOI: 10.1109/EExPolytech.2018.8564424
  24. R. Smerdov, A. Mustafaev, Y. Spivak, V. Moshnikov, I. Bizyaev, P. Somov, V. Gerasimov. Electronics, 10 (1), 1-13 (2021). DOI: 10.3390/electronics10010042
  25. A. Dey. Mat. Sci. Eng. B, 229, 206-217 (2018). DOI: 10.1016/j.mseb.2017.12.036
  26. F. Hossein-Babaei, A. Amini. Sens. Actuat. B Chem., 194, 156-163 (2014). DOI: 10.1016/j.snb.2013.12.061
  27. Y. Qin, Y. Liu, Y. Wang. ECS J. Solid State Sci. Technol., 5 (7), P380-P383 (2016). DOI: 10.1149/2.0051607
  28. A. Bobkov, V. Luchinin, V. Moshnikov, S. Nalimova, Y. Spivak. Sensors., 22 (4), 1530 (2022). DOI: 10.3390/s22041530
  29. V.A. Moshnikov, I. Gracheva, A.S. Lenshin, Y.M. Spivak, M.G. Anchkov, V.V. Kuznetsov, J.M. Olchowik. J. Non. Cryst. Solids, 358 (3), 590-595 (2012). DOI: 10.1016/j.jnoncrysol.2011.10
  30. L.B. Ahmed, S. Naama, A. Keffous, A. Hassein-Bey, T. Hadjersi. Prog. Nat. Sci., 25 (2), 101-110 (2015). DOI: 10.1016/j.pnsc.2015.03.003
  31. S. Naama, T. Hadjersi, A. Keffous, G. Nezzal. Mat. Sci. Semicond. Process., 38, 367-372 (2015). DOI: 10.1016/j.mssp.2015.01.027
  32. Y. Qin, D. Liu, T. Zhang, Z. Cui. ACS Appl. Mater. Interfaces, 9 (34), 28766-28773 (2017). DOI: 10.1021/acsami.7b10584
  33. Y. Qin, D. Liu, Z. Wang, Y. Jiang. Sens. Actuat. B Chem., 258, 730-738 (2018). DOI: 10.1016/j.snb.2017.11.177
  34. J. Baek, B. Jang, M.H. Kim, W. Kim, J. Kim, H.J. Rim, S. Shin, T. Lee, S. Cho, W. Lee. Sens. Actuat. B Chem., 256, 465-471 (2018). DOI: 10.1016/j.snb.2017.10.109
  35. J.H. Ahn, J. Yun, D.I. Moon, Y.K. Choi, I. Park. Nanotechnology, 26 (9), 095501 (2015). DOI: 10.1088/0957-4484/26/9/095501
  36. J. Yun, J.H. Ahn, D.I. Moon, Y.K. Choi, I. Park. ACS Appl. Mater. Interfaces, 11 (45), 42349-42357 (2019). DOI: 10.1021/acsami.9b15111
  37. L.S. Zhu, J. Zhang, X.W. Xu, Y.Z. Yu, X. Wu, T. Yang, X.H. Wang. Sens. Actuat. B Chem., 227, 515-523 (2016). DOI: 10.1016/j.snb.2015.12.080
  38. L.B. Ahmed, S. Naama, A. Keffous, A. Hassein-Bey, T. Hadjersi. Prog. Nat. Sci., 25 (2), 101-110 (2015). DOI: 10.1016/j.pnsc.2015.03.003
  39. S. Naama, T. Hadjersi, A. Keffous, G. Nezzal. Mater. Sci. Semicond. Process., 38, 367-372 (2015). DOI: 10.1016/j.mssp.2015.01.027
  40. D. Liu, L. Lin, Q. Chen, H. Zhou, J. Wu. ACS Sens., 2, 1491-1497 (2017). DOI: 10.1021/acssensors.7b00459
  41. J. Liao, Z. Li, G. Wang, C. Chen, S. Lv, M. Li. Phys. Chem. Chem. Phys, 18 (6), 4835-4841 (2016). DOI: 10.1039/C5CP07036H
  42. C. Samanta, A. Ghatak, A.K. Raychaudhuri, B. Ghosh. Nanotechnology, 30, 305501 (2019). DOI: 10.1088/1361-6528/ab10f8
  43. V.A. Moshnikov, A.S. Lenshin, Yu.M. Spivak. Issledovanie, tekhnologiya i ispol'zovanie nanoporistykh nositelej lekarstv v meditsine (Khimizdat, SPb, 2015), s. 70-116. (in Russian)
  44. P.G. Travkin, N.V. Vorontsova, S.A. Vysotsky, A.S. Lenshin, Yu.M. Spivak, V.A. Moshnikov. Izv. (SPbGETU "LETI," 4, 3-9 (2011). (in Russian)
  45. Y.M. Spivak, A.Y. Gagarina, M.O. Portnova, A.V. Zaikina, V.A. Moshnikov. J. Phys. Conf. Ser., 1697, 012126 (2020). DOI: 10.1088/1742-6596/1697/1/012126
  46. B. Moumni, A.B. Jaballah. Appl. Surf. Sci., 425, 1-7 (2017)
  47. K.A. Gonchar, D.V. Moiseev, I.V. Bozhev, L.A. Osminkina. Mater. Sci. Semicond. Process., 125, 105644 (2021)
  48. Y. Chen, B. Peng, B. Wang. J. Phys. Chem. C, 111 (16), 5855-5858 (2007). DOI: 10.1021/jp0685028
  49. S. Piscanec, M. Cantoro, A.C. Ferrari, J.A. Zapien, Y. Lifshitz, S.T. Lee, S. Hofmann, J. Robertson. Phys. Rev. B, 68 (24), 241312 (2003). DOI: 10.1103/physrevb.68.241312
  50. R. Tsu, H. Shen, M. Dutta. Appl. Phys. Lett., 60 (1), 112-114 (1992). DOI: 10.1063/1.107364
  51. R.K. Biswas, P. Khan, S. Mukherjee, A.K. Mukhopadhyay, J. Ghosh, K. Muraleedharan. J. Non. Cryst. Solids, 488, 1-9 (2018). DOI: 10.1016/j.jnoncrysol.2018.02.037
  52. P. McMillan. Am. Mineral., 69 (7-8), 622-644 (1984)
  53. A.S. Len'shin, V.M. Kashkarov, Y.M. Spivak, V.A. Moshnikov. Glass Phys. Chem., 38 (3), 315-321 (2012). DOI: 10.1134/s1087659612030091
  54. Q. Li, W. Qiu, H. Tan, J. Guo, Y. Kang. Opt. Lasers Eng., 48 (11), 1119-1125 (2010). DOI: 10.1016/j.optlaseng.2009.12.020
  55. R.K. Biswas, P. Khan, S. Mukherjee, A.K. Mukhopadhyay, J. Ghosh, K. Muraleedharan. J. Non. Cryst. Solids, 488, 1-9 (2018). DOI: 10.1016/j.jnoncrysol.2018.02.037
  56. A.V. Kononina, Yu.V. Balakshin, K.A. Gonchar, I.V. Bozh'ev, A.A. Shemukhin, V.S. Chernysh. Pis'ma v ZHTF, 48 (2), 11 (in Russian). DOI: 10.21883/PJTF.2022.02.51912.18989
  57. I. Iatsunskyi, S. Jurga, V. Smyntyna, M. Pavlenko, V. Myndrul, A. Zaleska. Proc. SPIE, 9132, 913217 (2014). DOI: 10.1117/12.2051489
  58. M. Ivanda. Raman Spectroscopy of Porous Silicon. Handbook of Porous Silicon (Springer, 2018), p. 611-620. DOI: 10.1007/978-3-319-71381-6_120
  59. T.A. Harriman, D.A. Lucca, J.K. Lee, M.J. Klopfstein, K. Herrmann, M. Nastasi. Nucl. Instrum. Meth. B, 267 (8-9), 1232-1234 (2009). DOI: 10.1016/j.nimb.2009.01.021
  60. A.S. Kachko, V.A. Volodin, V.R. Vakhovsky. Vestnik NGU, 5 (1), (2010). (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru