Kuznetsov A.P.
1, Sedova Yu.V.
11Saratov Branch, Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov, Russia
Email: kuzalexp@yandex.ru, sedovayv@yandex.ru
The interaction of a system with quasi-periodic autonomous dynamics and a chaotic system (Rossler system) is considered. The behavior of Lyapunov exponents is studied to identify possible types of system dynamics: chaos with additional zero Lyapunov exponents, three-frequency and two-frequency quasi-periodic regimes, periodic oscillations and the mode of oscillation death. Keywords: quasi-periodic oscillations, dynamical chaos, Rossler system, Lyapunov exponents.
- A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: a universal concept in nonlinear science (Cambridge University Press, 2001)
- A.G. Balanov, N.B. Janson, D.E. Postnov, O. Sosnovtseva, Synchronization: from simple to complex (Springer, 2009)
- V. Anishchenko, S. Nikolaev, J. Kurths, Phys. Rev. E, 73 (5), 056202 (2006). DOI: 10.1103/PhysRevE.73.056202
- V. Anishchenko, S. Nikolaev, J. Kurths, Phys. Rev. E, 76 (4), 046216 (2007). DOI: 10.1103/PhysRevE.76.046216
- V.S. Anishchenko, S.M. Nikolaev, Nelineinaya Din., 2 (3), 267 (2006) (in Russian). DOI: 10.20537/nd0603001
- V.S. Anishchenko, T.E. Vadivasova, Lektsii po nelineinoi dinamike (Nauchno-Izd. Tsentr "Regulyarnaya i khaoticheskaya dinamika", M.-Izhevsk, 2011), pp. 209--223, 250--278 (in Russian)
- A.P. Kuznetsov, N.V. Stankevich, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din., 23 (3), 71 (2015) (in Russian). DOI: 10.18500/0869-6632-2015-23-3-71-93
- A.P. Kuznetsov, Yu.V. Sedova, Tech. Phys. Lett., 48 (2), 85 (2022). DOI: 10.21883/TPL.2022.02.52858.18925
- A.P. Kuznetsov, S.P. Kuznetsov, N.A. Shchegoleva, N.V. Stankevich, Physica D, 398, 1 (2019). DOI: 10.1016/j.physd.2019.05.014
- A.P. Kuznetsov, Yu.V. Sedova, N.V. Stankevich, Zh. Tekh. Fiz., 91 (11), 1619 (2021) (in Russian). DOI: 10.21883/JTF.2021.11.51519.145-2
- R. Vitolo, H. Broer, C. Simo, Regul. Chaot. Dyn, 16 (1-2), 154 (2011). DOI: 10.1134/S1560354711010060
- Yu.A. Kuznetsov, H.G.E Meijer, Numerical bifurcation analysis of maps: from theory to software (Cambridge University Press, 2019), p. 44--49
- K. Kamiyama, M. Komuro, T. Endo, K. Aihara, Int. J. Bifur. Chaos, 24 (12), 1430034 (2014). DOI: 10.1142/S0218127414300341
- N.V. Stankevich, N.A. Shchegoleva, I.R. Sataev, A.P. Kuznetsov, J. Comput. Nonlinear Dyn., 15 (11), 111001 (2020). DOI: 10.1115/1.4048025
- E.A. Grines, A. Kazakov, I.R. Sataev, Chaos, 32 (9), 093105 (2022). DOI: 10.1063/5.0098163
- M. Sekikawa, N. Inaba, Int. J. Bifur. Chaos, 31 (01), 2150009 (2021). DOI: 10.1142/S0218127421500097
- E. Karatetskaia, A. Shykhmamedov, A. Kazakov, Chaos, 31 (1), 011102 (2021). DOI: 10.1063/5.0036405
- M.V. Ivanchenko, G.V. Osipov, V.D. Shalfeev, J. Kurths, Physica D, 189 (1-2), 8 (2004). DOI: 10.1016/j.physd.2003.09.035
- V. Astakhov, S. Koblyanskii, A. Shabunin, T. Kapitaniak, Chaos, 21 (2), 023127 (2011). DOI: 10.1063/1.3597643
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.