Active coplanar transmission line based on double-barrier GaAs/AlAs resonant tunneling diodes
Sobolev A. S. 1,2, Pavlov A. Yu.3, Maytama M. V.3,4, Glinskiy I. A.5, Ponomarev D. S.2,3, Spirin K. E.6, Zhmud B. A.2, Khabibullin R. A. 2,3
1Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow, Russia
2Moscow Institute of Physics and Technology (State University), Moscow, Russia
3 Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow, Russia
4Bauman Moscow State Technical University, Moscow, Russia
5MIREA - Russian Technological University, Moscow, Russia
6Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: ponomarev_dmitr@mail.ru, khabibullin_r@mail.ru, khabibullin@isvch.ru

PDF
Double-barrier GaAs/AlAs resonant tunneling diodes (RTDs) have become the promising elements for the development of sub-mm and THz emitters. We report on the fabrication of the RTD samples that were characterized via RF-reflectometry to determine the parameters of its equivalent circuit. By using numerical simulation we show that the coplanar transmission line with the RTD under study provides an amplification up to 8 GHz. Keywords: Resonant tunneling diodes, active microstrip transmission lines, distributed emitters, diodes with double metal contacts.
  1. A.E. Yachmenev, S.S. Pushkarev, R.R. Reznik, R.A. Khabibullin, D.S. Ponomarev, Prog. Cryst. Growt. Charact. Mater., 66 (2), 100485 (2020). DOI: 10.1016/j.pcrysgrow.2020.100485
  2. A.E. Yachmenev, R.A. Khabibullin, D.S. Ponomarev, J. Phys. D: Appl. Phys., 55 (19), 193001 (2022). DOI: 10.1088/1361-6463/ac43dd
  3. H. Eisele, Electron. Lett., 46 (6), 422 (2010). DOI: 10.1049/el.2010.3362
  4. D.V. Lavrukhin, A.E. Yachmenev, R.R. Galiev, R.A. Khabibullin, D.S. Ponomarev, Yu.V. Fedorov, P.P. Maltsev, Semiconductors, 48 (1), 69 (2014). DOI: 10.1134/S1063782614010187
  5. D. Ushakov, A. Afonenko, R. Khabibullin, D. Ponomarev, V. Aleshkin, S. Morozov, A. Dubinov, Opt. Express, 28 (17), 25371 (2020). DOI: 10.1364/OE.398552
  6. D.V. Ushakov, A.A. Afonenko, I.A. Glinskii, R.A. Khabibullin, Russ. Technol. J., 10 (3), 45 (2022). DOI: 10.32362/2500-316X-2022-10-3-45-55
  7. T. Maekawa, H. Kanaya, S. Suzuki, M. Asada, Appl. Phys. Express, 9 (2), 024101 (2016). DOI: 10.7567/APEX.9.024101
  8. H. Mizuta, T. Tanoue, The physics and applications of resonant tunneling diodes (Cambridge University Press, Cambridge, 1995)
  9. K. Kasagi, S. Suzuki, M. Asada, J. Appl. Phys., 125 (15), 151601 (2019). DOI: 10.1063/1.5051007
  10. A. Sobolev, S. Zaitsev-Zotov, M. Maytama, E. Klimov, A. Pavlov, D. Ponomarev, R. Khabibullin, Opt. Eng., 60 (8), 082019 (2021). DOI: 10.1117/1.OE.60.8.082018
  11. N.C. Kluksdahl, A.M. Kriman, D.K. Ferry, C. Ringhofer, Phys. Rev. B, 39 (11), 7720 (1989)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru