Impact of transverse optical confinement on performance of 1.55 μm vertical-cavity surface-emitting lasers with a buried tunnel junction
Blokhin S.A. 1, Bobrov M. A. 1, Blokhin A.A. 1, Maleev N.A. 1, Kuzmenkov A.G. 2, Vasyl’ev A.P. 2, Rochas S. S. 3, Babichev A. V. 3, Novikov I. I. 3, Karachinsky L. Ya. 3, Gladyshev A. G. 4, Denisov D. V. 5, Voropaev K. O. 6, Egorov A. Yu. 4, Ustinov V. M. 2
1Ioffe Institute, St. Petersburg, Russia
2Submicron Heterostructures for Microelectronics, Research and Engineering Center, Russian Academy of Sciences, St. Petersburg, Russia
3ITMO University, St. Petersburg, Russia
4Connector Optics LLC, St. Petersburg, Russia
5St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
6OAO OKB-Planeta, Veliky Novgorod, Russia
Email: blokh@mail.iioffe.ru, bobrov.mikh@gmail.com, bloalex91@yandex.ru, Maleev@beam.ioffe.ru, kuzmenkov@mail.ioffe.ru, vasiljev@mail.ioffe.ru, stanislav_rochas@itmo.ru, a.babichev@mail.ioffe.ru, Innokenty.Novikov@connector-optics.com, leonid.karachinsky@connector-optics.com, andrey.gladyshev@connector-optics.com, dmitry.denisov@connector-optics.com, voropaevko@okbplaneta.ru, anton@beam.ioffe.ru, vmust@beam.ioffe.ru

PDF
The impact of transverse optical confinement on the static and spectral characteristics of 1.55 μm vertical-cavity surface-emitting lasers (WF-VCSEL) with a buried tunnel junction (BTJ) n++-InGaAs/p++-InGaAs/p++-InAlGaAs, implemented using molecular-beam epitaxy and wafer fusion. It was found that for VCSELs with a tunnel junction (TJ) etching depth of 15 nm, the single-mode lasing occurs up to 8 μm BTJ mesa size due to a relatively weak lateral optical confinement, while the effect of a saturable absorber (SA) appears when the BTJ mesa size is less than 7 μm. Enhancing lateral optical confinement by increasing the BTJ etching depth up to 20 nm leads to suppression of the SA effect at the BTJ mesa size of 5-6 μm, but simultaneously limits the maximum single-mode optical power. According to obtained results an increase in the spectral mismatch between the maximum of the gain spectrum of the active region and the resonance wavelength of the WF-VCSEL up to ~ 35-50 nm will make it possible to suppress the undesirable SA effect in a wide range of the BTJ mesa sizes maintaining the single-mode lasing. Keywords: vertical-cavity surface-emitting laser, wafer fusion, molecular beam epitaxy, single-mode operation, saturable absorber.
  1. A. Caliman, A. Mereuta, G. Suruceanu, V. Iakovlev, A. Sirbu, E. Kapon, Opt. Express, 19 (18), 16996 (2011). DOI: 10.1364/OE.19.016996
  2. D. Ellafi, V. Iakovlev, A. Sirbu, G. Suruceanu, Z. Mickovic, A. Caliman, A. Mereuta, E. Kapon, IEEE J. Sel. Top. Quant. Electron., 21 (6), 414 (2015). DOI: 10.1109/jstqe.2015.2412495
  3. A.V. Babichev, L.Ya. Karachinsky, I.I. Novikov, A.G. Gladyshev, S.A. Blokhin, S. Mikhailov, V. Iakovlev, A. Sirbu, G. Stepniak, L. Chorchos, J.P. Turkiewicz, K.O. Voropaev, A.S. Ionov, M. Agustin, N.N. Ledentsov, A.Yu. Egorov, IEEE J. Sel. Top. Quant. Electron., 53 (6), 2400808 (2017). DOI: 10.1109/JQE.2017.2752700
  4. C. Lauer, M. Ortsiefer, R. Shau, J. Rosskopf, G. Bohm, R. Meyer, M.C. Amann, Phys. Status Solidi C, 1 (8), 2183 (2004). DOI: 10.1002/pssc.200404770
  5. M. Muller, W. Hofmann, T. Grundl, M. Horn, P. Wolf, R.D. Nagel, E. Ronneberg, G. Bohm, D. Bimberg, M.-C. Amann, IEEE J. Sel. Top. Quant. Electron., 17 (5), 1158 (2011). DOI: 10.1109/JSTQE.2011.2109700
  6. T. Grundl, P. Debernardi, M. Muller, C. Grasse, P. Ebert, K. Geiger, M. Ortsiefer, G. Bohm, R. Meyer, M.-C. Amann, IEEE J. Sel. Top. Quant. Electron., 19 (4), 1700913 (2013). DOI: 10.1109/JSTQE.2013.2244572
  7. M. Ortsiefer, R. Shau, G. Bohm, F. Kohler, M.C. Amann, Appl. Phys. Lett., 76 (16), 2179 (2000). DOI: 10.1049/el:20020819
  8. D. Keiper, R. Westphalen, G. Landgren, J. Cryst. Growth, 197 (1-2), 25 (1999). DOI: 10.1016/S0022-0248(98)00903-8
  9. N. Volet, T. Czyszanowski, J. Walczak, L. Mutter, B. Dwir, Z. Mickovic, P. Gallo, A. Caliman, A. Sirbu, A. Mereuta, V. Iakovlev, E. Kapon, Opt. Express, 21 (22), 26983 (2013). DOI: 10.1364/OE.21.026983
  10. S.A. Blokhin, M.A. Bobrov, N.A. Maleev, A.A. Blokhin, A.G. Kuz'menkov, A.P. Vasil'ev, S.S. Rochas, A.G. Gladyshev, A.V. Babichev, I.I. Novikov, L.Ya. Karachinsky, D.V. Denisov, K.O. Voropaev, A.S. Ionov, A.Yu. Egorov, V.M. Ustinov, Tech. Phys. Lett., 46 (9), 854 (2020). DOI: 10.1134/S1063785020090023
  11. S.A. Blokhin, A.V. Babichev, A.G. Gladyshev, L.Ya. Karachinsky, I.I. Novikov, A.A. Blokhin, S.S. Rochas, D.V. Denisov, K.O. Voropaev, A.S. Ionov, A.Yu. Egorov, Electron. Lett. (First published: 3 June 2021). DOI: 10.1049/ell2.12232
  12. S.A. Blokhin, V.N. Nevedomsky, M.A. Bobrov, N.A. Maleev, A.A. Blokhin, A.G. Kuzmenkov, A.P. Vasyl'ev, S.S. Rohas, A.V. Babichev, A.G. Gladyshev, I.I. Novikov, L.Ya. Karachinsky, D.V. Denisov, K.O. Voropaev, A.S. Ionov, A.Yu. Egorov, V.M. Ustinov, Semiconductors, 54 (10), 1276 (2020). DOI: 10.21883/FTP.2020.10.49947.9463 [S.A. Blokhin, S.N. Nevedomsky, M.A. Bobrov, N.A. Maleev, A.A. Blokhin, A.G. Kuzmenkov, A.P. Vasyl'ev, S.S. Rohas, A.V. Babichev, A.G. Gladyshev, I.I. Novikov, L.Ya. Karachinsky, D.V. Denisov, K.O. Voropaev, A.S. Ionov, A.Yu. Egorov, V.M. Ustinov, Semiconductors, 54 (10), 1276 (2020). DOI: 10.1134/S1063782620100048]
  13. K.O. Voropaev, B.I. Seleznev, A.Yu. Prokhorov, A.S. Ionov, S.A. Blokhin, J. Phys.: Conf. Ser., 1658, 12069 (2020). DOI: 10.1088/1742-6596/1658/1/012069
  14. G.R. Hadley, Opt. Lett., 20 (13), 1483 (1995). DOI: 10.1364/OL.20.001483
  15. G.P. Agrawal, Fiber-optic communication systems (Wiley, N.Y., 2010)
  16. R. Michalzik, VCSELs: fundamentals, technology and applications of vertical-cavity surface-emitting lasers (Springer-Verlag, Berlin, 2013). DOI: 10.1007/978-3-642-24986-0
  17. D.G. Deppe, J. Leshin, J. Leshin, L. Eifert, F. Tucker, T. Hillyer, Electron. Lett., 53 (24), 1598 (2017). DOI: 10.1049/el.2017.2780
  18. S.A. Blokhin, M.A. Bobrov, A.A. Blokhin, A.P. Vasil'ev, A.G. Kuz'menkov, N.A. Maleev, S.S. Rochas, A.G. Gladyshev, A.V. Babichev, I.I. Novikov, L.Ya. Karachinsky, D.V. Denisov, K.O. Voropaev, A.S. Ionov, A.Yu. Egorov, V.M. Ustinov, Tech. Phys. Lett., 46 (12), 1257 (2020). DOI: 10.1134/S1063785020120172.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru