Investigation of the influence of the type of the lightning diverter strip on the spectrum of electromagnetic interference on the antenna under the model of the nose radome of the aircraft by using an artificial thunderstorm cell
Temnikov A. G. 1, Chernensky L. L. 1, Orlov A. V. 1, Lysov N. Y. 1, Belova O. S. 1, Kovalev D. I. 1, Kivshar T. K.1
1National Research University «Moscow Power Engineering Institute», Moscow, Russia

The paper presents the results of physical modeling of the effect of solid and segmented lightning diverter strips on the spectrum of electromagnetic interference on the antenna under the model of the aircraft nose radome under the influence of an artificial thunderstorm cell. It is shown that the use of segmented lightning diverter strips leads to appearance of signals with frequencies up to a few gigahertz in the spectrum on the antenna. The relationship between the antenna signal spectrum and spectral characteristics of current pulses on the lightning diverter strip is established. The influence of discharges along the radome surface and those between the segments on the electromagnetic interference spectrum on the antenna under the radome has been revealed. Keywords: lightning, solid and segmented lightning diverter strips, model of aircraft nose radome, artificial thunderstorm cell, wavelet spectrum, discharge.
  1. A. Hall, in 2005 Int. Conf. on lightning and static electricity (Seattle, USA, 2005), p. 118. DOI: 10.13140/RG.2.2.21467.82727
  2. N.I. Petrov, A. Haddad, G.N. Petrova, H. Griffiths, R.T. Waters, in Recent advances in aircraft technology, ed. by R.K. Agarwal (IntechOpen, 2012), p. 523. DOI: 10.5772/36634
  3. C. Karch, C. Paul, F. Heidler, in 2019 Int. Symp. on electromagnetic compatibility (EMC EUROPE) (Barcelona, Spain, 2019), p. 650. DOI: 10.1109/EMCEurope.2019.8871944
  4. D. Yan-chao, X. Xiu, H.U. Pingdao, in 2017 Int. Symp. on electromagnetic compatibility (EMC EUROPE) (Angers, France, 2017). DOI: 10.1109/EMCEUROPE.2017.8094806
  5. A. Vukovic, P. Sewell, T. Benson, IEEE Trans. Antennas Propagat., 68 (11), 7287 (2020). DOI: 10.1109/TAP.2020.2998169
  6. J.-P. Parmantier, F. Issac, V. Gobin, Aerospace Lab J., 5, ALO5-10 (2012).
  7. P.R.P. Hoole, M.R.M. Sharip, J. Fisher, K. Pirapaharan, A.K.H. Othman, N. Julai, S.A. Rufus, S. Sahrani, S.R.H. Hoole, J. Telecommun. Electron. Comput. Eng., 9 (3-10), 1 (2017).
  8. P.R.P. Hoole, J. Fisher, K. Pirapaharan, Al K.H. Othman, N. Julai, Aravind CV, K.S. Senthilkumar, S.R.H. Hoole, Int. J. Control Theory Appl., 10 (16), 221 (2017). 8.410
  9. A.G. Temnikov, L.L. Chernensky, A.V. Orlov, O.V. Polyakova, Pis'ma v ZhTF, 36 (18), 40 (2010) (in Russian)
  10. M.R.M. Esa, M.R. Ahmad, V. Cooray, J. Atmospher. Res., 138, 253 (2014). DOI: 10.1016/J.ATMOSRES.2013.11.019

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245