Focused ion beam milling of ridge waveguides of edge-emitting semiconductor lasers
Payusov A. S.
1, Mitrofanov M. I.
1,2, Kornyshov G. O.
3, Serin A. A.
1, Voznyuk G. V.
1, Kulagina M. M.
1, Evtikhiev V.P.
1, Gordeev N.Yu.
1, Maximov M. V.
3, Breuer S.
41Ioffe Institute, St. Petersburg, Russia
2Submicron Heterostructures for Microelectronics, Research and Engineering Center, Russian Academy of Sciences, St. Petersburg, Russia
3Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
4Institute of Applied Physics, Technische Universität Darmstadt, Darmstadt, Germany
Email: plusov@mail.ioffe.ru, maxi.mitrofanov@gmail.com, supergrigoir@gmail.com, spbgate21@gmail.com, glebufa0@gmail.com, marina.kulagina@mail.ioffe.ru, evtikhiev@mail.ioffe.ru, nkt.grdv@gmail.com, maximov.mikh@gmail.com, stefan.breuer@physik.tu-darmstadt.de
We studied the influence of the focused ion beam milling of ridge waveguides on lasing parameters of edge-emitting lasers, based on a separate confinement double heterostructure. It is shown that there are three degrees of influence, according to the etching depth: modification of the waveguide properties only, a decrease in efficiency without changing the threshold current, and a simultaneous deterioration in the threshold current and efficiency with significant modification of the optical characteristics of the laser. Keywords: focused ion beam, semiconductor laser, optical waveguide, single mode lasing.
- K. Paschke, F. Bugge, G. Blume, D. Feise, G. Erbert, Opt. Lett., 40, 100 (2015). DOI: 10.1364/OL.40.000100
- H. Wenzel, A. Klehr, M. Braun, F. Bugge, G. Erbert, J. Fricke, A. Knauer, P. Ressel, B. Sumpf, M. Weyers, G. Traenkle, Proc. SPIE, 5594, 110 (2004). DOI: 10.1117/12.569039
- N.Yu. Gordeev, A.S. Payusov, I.S. Mukhin, A.A. Serin, M.M. Kulagina, Yu.A. Guseva, Yu.M. Shernyakov, Yu.M. Zadiranov, M.V. Maximov, Semiconductors, 53, 200 (2019). DOI: 10.1134/S1063782619020106
- S. O'Brien, A. Amann, R. Fehse, S. Osborne, E.P. O'Reilly, J.M. Rondinelli, J. Opt. Soc. Am. B, 23, 1046 (2006). DOI: 10.1364/JOSAB.23.001046
- R.M. Langford, A.K. Petford-Long, M. Rommeswinkle, S. Egelkamp, Mater. Sci. Technol., 18, 743 (2002). DOI: 10.1179/026708302225003893
- P. Romagnoli, M. Maeda, J.M. Ward, V.G. Truong, S.N. Chormaic, Appl. Phys. B, 126, 111 (2020). DOI: 10.1007/s00340-020-07456-x
- G.V. Voznyuk, I.N. Grigorenko, M.I. Mitrofanov, D.N. Nikolaev, M.N. Mizerov, V.P. Evtikhiev, Semoconductors, 54, 1869 (2020). DOI: 10.1134/S1063782620140316
- C.R. Musil, B.D. Patterson, H. Auderset, Nucl. Instrum. Meth. Phys. Res. B, 127-128, 428 (1997). DOI: 10.1016/S0168-583X(96)00968-8
- M.V. Maximov, A.M. Nadtochiy, S.A. Mintairov, N.A. Kalyuzhnyy, N.V. Kryzhanovskaya, E.I. Moiseev, N.Yu. Gordeev, Yu.M. Shernyakov, A.S. Payusov, F.I. Zubov, V.N. Nevedomskiy, S.S. Rouvimov, A.E. Zhukov, Appl. Sci., 10, 1038 (2020). DOI: 10.3390/app10031038
- N.Yu. Gordeev, I.I. Novikov, A.M. Kuznetsov, Yu.M. Shernyakov, M.V. Maximov, A.E. Zhukov, A.V. Chunareva, A.S. Payusov, D.A. Livshits, A.R. Kovsh, Semiconductors, 44, 1357 (2010). DOI: 10.1134/S1063782610100192
- H. Temkin, J.P. van der Ziel, R.A. Linke, R.A. Logan, Appl. Phys. Lett., 43, 723 (1983). DOI: 10.1063/1.94490
- D. Marcuse, T.-P. Lee, IEEE J. Quantum Electron., 20, 166 (1984). DOI: 10.1109/JQE.1984.1072360
- J. Rong, E. Xing, L. Wang, S. Shu, S. Tian, C. Tong, L. Wang, Appl. Phys. Express, 9, 072104 (2016). DOI: 10.7567/APEX.9.072104
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.