Heterostructures of quantum-cascade lasers with nonselective overgrowth by metalorganic vapour phase epitaxy
Babichev A. V. 1, Gladyshev A. G. 2, Denisov D. V.3, Dudelev V. V. 1, Mikhailov D. A. 1, Slipchenko S. O. 1, Lyutetskii A. V. 1, Karachinsky L. Ya. 1,2,4, Novikov I. I. 1,2,4, Andreev A. Yu. 5, Yarotskaya I. V. 5, Podgaetskii K. A. 5, Marmalyuk A. A. 5, Padalitsa A. A. 5, Ladugin M. A. 5, Pikhtin N. A. 1, Sokolovskii G. S. 1, Egorov A. Yu. 4
1Ioffe Institute, St. Petersburg, Russia
2Connector Optics LLC, St. Petersburg, Russia
3St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
4 ITMO University, St. Petersburg, Russia
5“Polyus” Research Institute of M.F. Stelmakh Joint Stock Company, Moscow, Russia
Email: andandyu@mail.ru, i.yarotskaya@mail.ru, a.babichev@mail.ioffe.ru, maximladugin@mail.ru

PDF
The possibility of fabrication of 4.6 μm spectral range quantum-cascade laser heterostructures by molecular-beam epitaxy technique with non-selective overgrowth by the metalorganic vapour-phase epitaxy is shown. The active region of the laser was formed on the basis of a heteropair of In0.67Ga0.33As/In0.36Al0.64As solid alloys. The waveguide claddings are formed by indium phosphide. The results of surface defects inspection and X-ray diffraction analysis of quantum-cascade laser heterostructures allow to conclude that the structural quality of the heterostructures is high and the estimated value of the root mean square surface roughness does not exceed 0.7 nm. Lasers with four cleaved facets exhibit lasing at room temperature with a relatively low threshold current density of the order of 1 kA/cm2. Keywords: superlattices, quantum-cascade laser, epitaxy, indium phosphide.
  1. Q. Lu, S. Slivken, D. Wu, M. Razeghi, Opt. Express, 28 (10), 15181 (2020). DOI: 10.1364/oe.393069
  2. M. Suttinger, R. Kaspi, A. Lyakh, in Mid-infrared optoelectronics, ed. by E. Tournie, L. Cerutti (Woodhead Publ., Sawston, UK, 2020), p. 181--205. DOI: 10.1016/b978-0-08-102709-7.00005-x
  3. P. Figueiredo, M. Suttinger, R. Go, E. Tsvid, C.K.N. Patel, A. Lyakh, Appl. Opt., 56 (31), H15 (2017). DOI: 10.1364/ao.56.000h15
  4. A. Lyakh, M. Suttinger, R. Go, P. Figueiredo, A. Todi, Appl. Phys. Lett., 109 (12), 121109 (2016). DOI: 10.1063/1.4963233
  5. R. Maulini, A. Lyakh, A. Tsekoun, C.K.N. Patel, Opt. Express, 19 (18), 17203 (2011). DOI: 10.1364/oe.19.017203
  6. F. Kapsalidis, M. Shahmohammadi, M.J. Suess, J.M. Wolf, E. Gini, M. Beck, M. Hundt, B. Tuzson, L. Emmenegger, J. Faist, Appl. Phys. B, 124 (6), 107 (2018). DOI: 10.1007/s00340-018-6973-2
  7. L. Consolino, S. Jung, A. Campa, M. De Regis, S. Pal, J.H. Kim, K. Fujita, A. Ito, M. Hitaka, S. Bartalini, P. De Natale, M.A. Belkin, M.S. Vitiello, Sci. Adv., 3 (9), e1603317 (2017). DOI: 10.1126/sciadv.1603317
  8. A.V. Babichev, V.V. Dudelev, A.G. Gladyshev, D.A. Mikhailov, A.S. Kurochkin, E.S. Kolodeznyi, V.E. Bougrov, V.N. Nevedomskiy, L.Ya. Karachinsky, I.I. Novikov, D.V. Denisov, A.S. Ionov, S.O. Slipchenko, A.V. Lutetskiy, N.A. Pikhtin, G.S. Sokolovskii, A.Yu. Egorov, Tech. Phys. Lett., 45 (7), 735 (2019). DOI: 10.1134/s1063785019070174
  9. A.V. Babichev, A.G. Gladyshev, A.S. Kurochkin, V.V. Dudelev, E.S. Kolodeznyi, G.S. Sokolovskii, V.E. Bugrov, L.Ya. Karachinsky, I.I. Novikov, D.V. Denisov, A.S. Ionov, S.O. Slipchenko, A.V. Lyutetskii, N.A. Pikhtin, A.Yu. Egorov, Tech. Phys. Lett., 45 (4), 398 (2019). DOI: 10.1134/s1063785019040205
  10. A.V. Babichev, A.G. Gladyshev, V.V. Dudelev, L.Ya. Karachinsky, I.I. Novikov, D.V. Denisov, S.O. Slipchenko, A.V. Lyutetskii, N.A. Pikhtin, G.S. Sokolovskii, A.Yu. Egorov, Tech. Phys. Lett., 46 (5), 442 (2020). DOI: 10.1134/s1063785020050028
  11. A.Yu. Egorov, A.V. Babichev, L.Ya. Karachinsky, I.I. Novikov, E.V. Nikitina, M. Tchernycheva, A.N. Sofronov, D.A. Firsov, L.E. Vorobjev, N.A. Pikhtin, I.S. Tarasov, Semiconductors, 49 (11), 1527 (2015). DOI: 10.1134/s1063785020050028
  12. A. Steinbach, A. Belyaev, B. Pinto, D. Chen, S. Radovanovic, G. Neskovic, H. Yeh, A. Wang, J. Cao, J. Reich, D. Kavaldjiev, P. Dighe, R. Bammi, L. Vintro, D. Bloom, in Be market ready, ed. by U. Subramaniam. Yield management solutions (KLA-Tencor Corporation, San Jose, California, 2006), p. 64-67. Available online: https://www.ymsmagazine.com/wp-content/uploads/ summer06.pdf\#page=64 (accessed 03.09.2021)
  13. V.V. Dudelev, D.A. Mikhailov, A.V. Babichev, S.N. Losev, E.A. Kognovitskaya, A.V. Lyutetskii, S.O. Slipchenko, N.A. Pikhtin, A.G. Gladyshev, D.V. Denisov, I.I. Novikov, L.Ya. Karachinsky, V.I. Kuchinskii, A.Yu. Egorov, G.S. Sokolovskii, Quantum Electron., 50 (8), 720 (2020). DOI: 10.1070/qel17332
  14. V.V. Dudelev, D.A. Mikhailov, A.V. Babichev, G.M. Savchenko, S.N. Losev, E.A. Kognovitskaya, A.V. Lyutetskii, S.O. Slipchenko, N.A. Pikhtin, A.G. Gladyshev, D.V. Denisov, I.I. Novikov, L.Ya. Karachinsky, V.I. Kuchinskii, A.Yu. Egorov, G.S. Sokolovskii, Quantum Electron., 50 (11), 989 (2020). DOI: 10.1070/qel17396.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru