Measuring the effect of gravitational frequency shift doubling using a hydrogen clock-based quantum level
Fateev V. F.1, Smirnov F. R.1, Rybakov E. A.1
1All-Russian Research Institute of Physical-Technical and Radiotechnical Measurements, Mendeleevo, Moscow oblast, Russia
Email: frsmirnov@vniiftri.ru

PDF
The effect of gravitational frequency shift doubling in a system of stationary and transported hydrogen quantum clocks in the Earth's gravitational field has been measured for the first time with an instability of 1·10-15. The clocks were separated in height by 34 m and connected by a radio channel based on optical fiber. The measured relative doubled "redshift" effect at this altitude was Delta fGR/fref=(-7.73± 1.61)· 10-15. Keywords: time dilation gravitational effect, gravitational frequency shift, quantum hydrogen clock.
  1. V.F. Fateev, V.P. Sysoev, E.A. Rybakov, Meas. Tech., 59 (4), 402 (2016). DOI: 10.1007/s11018-016-0979-0
  2. V.F. Fateev, A.I. Zharikov, V.P. Sysoev, E.A. Rybakov, F.R. Smirnov, Dokl. Earth Sci., 472 (1), 91 (2017). DOI: 10.1134/S1028334X17010147
  3. V.F. Fateev, E.A. Rybakov, Dokl. Phys., 66 (1), 17 (2021). DOI: 10.31857/S2686740020060097
  4. L.D. Landau, E.M. Lifshitz, Teoriya polya (Nauka, M., 1967) (in Russian)
  5. C. Audoin, B. Guinot, Izmerenie vremeni. Osnovy GPS (Tekhnosfera, M., 2002), p. 359 (in Russian)
  6. S. Herrmann, F. Finke, M. Lulf, Phys. Rev. Lett., 121 (23), 231102 (2018). DOI: 10.1103/PhysRevLett.121.231102
  7. P. Delva, N. Puchades, E. Schonemann, F. Dilssner, C. Courde, S. Bertone, F. Gonzalez, A. Hees, Ch. Le Poncin-Lafitte, F. Meynadier, R. Prieto-Cerdeira, B. Sohet, J. Ventura-Traveset, P. Wolf, Phys. Rev. Lett., 121 (23), 231101 (2018), DOI: 10.1103/PhysRevLett.121.231101
  8. N. Ashby, Living Rev. Relativ., 6 (1), 1 (2003). DOI: 10.12942/lrr-2003-1
  9. GLONASS Interface Control Document, Ed. 5.1 (2008)
  10. V.N. Rudenko, Sov. Phys. Usp., 21 (11), 893 (1978). DOI: 10.1070/PU1978v021n11ABEH005714
  11. S.G. Turyshev, Phys. Usp., 52 (1), 1 (2009). DOI: 10.3367/UFNe.0179.200901a.0003
  12. J. Grotti, S. Koller, S. Vogt, S. Hafner, U. Sterr, C. Lisdat, H. Denker, C. Voigt, L. Timmen, A. Rolland, F.N. Baynes, H.S. Margolis, M. Zampaolo, P. Thoumany, M. Pizzocaro, B. Rauf, F. Bregolin, A. Tampellini, P. Barbieri, M. Zucco, G.A. Costanzo, C. Clivati, F. Levi, D. Calonico, Nature Phys., 14, 437 (2018). DOI: 10.1038/s41567-017-0042-3
  13. M. Takamoto, I. Ushijima, N. Ohmae, T. Yahagi, K. Kokado, H. Shinkai, H. Katori, Nature Photon., 14, 411 (2020). DOI: 10.1038/s41566-020-0619-8
  14. J. Muller, D. Dirkx, S.M. Kopeikin, G. Lion, I. Panet, G. Petit, P.N.A.M. Visser, Space Sci. Rev., 214 (1), 5 (2018). DOI: 10.1007/s11214-017-0431-z
  15. V.F. Fateev, Relyativistskaya metrologiya okolozemnogo prostranstva-vremeni (VNIIFTRI, Mendeleevo, 2017) (in Russian)
  16. V.F. Fateev, Al'm. Sovrem. Metrol., No. 3(23), 11 (2020) (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru