Synthesis and diameter distribution approach of vertically aligned carbon nanotubes array
Lyanguzov N. V.
1, Nikitina E. V.1, Sim V. S.1
1Southern Federal University, Rostov-on-Don, Russia
Email: n.lianguzov@mail.ru, nikitina.jenia@gmail.com, sim@sfedu.ru
Vertically aligned carbon nanotubes arrays were synthesized via catalytic chemical vapor deposition technique. An opportunity to decreasing of acetylene as a carbon precursor contain down to 0.2% was demonstrated. An iron acetate as an alternative catalyst was proposed. Diameters of carbon nanotubes were estimated by them Raman spectra. Considering resonant behavior of radial breathing modes and them significant environment influencing, an approach based on a profile analyzing of G-band was offered to revel of nanotubes diameter distribution features. Keywords: carbon nanotubes, chemical vapor deposition, Raman spectroscopy, radial breathing modes, G-band.
- A. Thapa, Y.R. Poudel, R. Guo, K.L. Jungjohann, X. Wang, W. Li, Carbon, 171, 188 (2021). DOI: 10.1016/j.carbon.2020.08.081
- D.T. Welna, L. Qu, B.E. Taylor, L. Dai, M.F. Durstock, J. Power Sources, 196, 1455 (2011). DOI: 10.1016/j.jpowsour.2010.08.003
- L. Sun, M. Zhu, C. Zhao, P. Song, Y. Wang, D. Xiao, H. Liu, S.H. Tsang, E.H.T. Teo, F. Hu, L. Tu, Carbon, 154, 503 (2019). DOI: 10.1016/j.carbon.2019.08.001
- M.M. Rahman, H. Younes, G. Ni, T. Zhang, A.A. Ghaferi, Mater. Res. Bull., 77, 243 (2016). DOI: 10.1016/j.materresbull.2016.01.050
- Y. Luo, X. Wang, M. He, X. Li, H. Chen, J. Nanomater., 2012, 542582 (2012). DOI: 10.1155/2012/542582
- M. Fouquet, B.C. Bayer, S. Esconjauregui, C. Thomsen, S. Hofmann, J. Robertson, J. Phys. Chem., 118, 5773 (2014). DOI: 10.1021/jp4085348
- D.N. Futaba, K. Hata, T. Namai, T. Yamada, K. Mizuno, Y. Hayamizu, M. Yumura, S. Iijima, J. Phys. Chem., 110, 8035 (2006). DOI: 10.1021/jp060080e
- P.T. Araujo, I.O. Maciel, P.B.C. Pesce, M.A. Pimenta, S.K. Doorn, H. Qian, A. Hartschuh, M. Steiner, L. Grigorian, K. Hata, A. Jorio, Phys. Rev. B, 77, 241403 (2008). DOI: 10.1103/PhysRevB.77.241403
- S. Chiashi, K. Kono, D. Matsumoto, J. Shitaba, N. Homma, A. Beniya, T. Yamamoto, Y. Homma, Phys. Rev. B, 91, 155415 (2015). DOI: 10.1103/PhysRevB.91.155415
- D.I. Levshov, H.N. Tran, M. Paillet, R. Arenal, X.T. Than, A.A. Zahab, Y.I. Yuzyuk, J.-L. Sauvajol, T. Michel, Carbon, 114, 141 (2016). DOI: 10.1016/j.carbon.2016.11.076
- S. Rochal, D. Levshov, M. Avramenko, R. Arenal, T.T. Cao, V.C. Nguyen, J.-L. Sauvajol, M. Paillet, Nanoscale, 11, 16092 (2019). DOI: 10.1039/C9NR03853A
- D.V. Chalin, S.B. Rochal, Phys. Rev. B, 102, 115426 (2020). DOI: 10.1103/PhysRevB.102.115426
- G.M. do Nascimento, T. Hou, Y.A. Kim, H. Muramatsu, T. Hayashi, M. Endo, N. Akuzawa, M.S. Dresselhaus, Carbon, 49, 3585 (2011). DOI: 10.1016/j.carbon.2011.04.061
- H. Telg, J.G. Duque, M. Staiger, X. Tu, F. Hennrich, M.M. Kappes, M. Zheng, J. Maultzsch, C. Thomsen, S.K. Doorn, ACS Nano, 6, 904 (2012). DOI: 10.1021/nn2044356
- A.G. Redina, M.V. Avramenko, N.V. Lyanguzov, Tech. Phys., 66 (3), 445 (2021). DOI: 10.1134/S106378422103021X
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.