Nanosized gold films formation under conditions of multiple autoirradiation with ion-beam deposition
Sharko S. A.1, Serokurova A. I.1, Novitskii N. N.1, Stognij A. I.1, Ketsko V. A.2
1Scientific and Practical Materials Research Center, National Academy of Sciences of Belarus, Minsk, Belarus
2Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
Email: sharko@physics.by, serokurova@physics.by, novitski@physics.by, stognij@physics.by, ketsko@igic.ras.ru
Uniform gold films with a thickness of several tens of nanometers were obtained for the first time on silicon and quartz substrates by ion-beam deposition-sputtering. It is shown that the predominant lateral growth of nanoscale metal layers along the substrate surface occurs under exposure to the high-energy component of the sputtered atoms flux. The decisive role in the nanometer gold film formation is played by elastic collisions of sputtered metal atoms with atoms of the substrate and growing film. The application of the multiple deposition-sputtering operation allows suppressing the grain formation process and obtaining gold films with better characteristics than those with a single deposition. Keywords: ion-beam sputtering-deposition, nanosized gold film, electric resistance, surface roughness, autoirradiation
- P.N. Naydenov, A.L. Chekhov, O.L. Golikova, A.V. Bespalov, A.A. Geraskin, S.S. Savin, T.V. Murzina, Phys. Solid State, 61 (9), 1658 (2019). DOI: 10.1134/S106378341909018X
- A.I. Stognij, N.N. Novitsky, O.M. Stukalov, A.I. Demchenko, V.I. Khitko, Tech. Phys. Lett., 30 (3), 256 (2004). DOI: 10.1134/1.1707185
- V. Amendola, R. Pilot, M. Frasconi, O.M. Marago, M.A. Iati, J. Phys.: Condens. Matter., 29 (20), 203002 (2017). DOI: 10.1088/1361-648X/aa60f3
- I. Razdolski, A.L. Chekhov, A.I. Stognij, A. Stupakiewicz, Phys. Rev. B, 100 (4), 045412 (2019). DOI: 10.1103/PhysRevB.100.045412
- A.L. Chekhov, V.L. Krutyanskiy, V.A. Ketsko, A.I. Stognij, T.V. Murzina, Opt. Mater. Express, 5 (7), 1647 (2015). DOI: 10.1364/OME.5.001647
- R. Malureanu, A. Lavrinenko, Nanotechnol. Rev., 4 (3) 259 (2015). DOI: 10.1515/ntrev-2015-0021
- Y. Kombluth, R. Mathews, L. Parameswaran, L.M. Racz, L.F. Velasquez-Garcia, Additive Manufacturing, 36, 101679 (2020). DOI: 10.1016/j.addma.2020.101679
- L. Leandro, R. Malureanu, N. Rozlosnik, A. Lavrinenko, ACS Appl. Mater. Interfaces, 7 (10) 5797 (2015). DOI: 10.1021/am508681u
- C. Bundesmann, H. Neumann, J. Appl. Phys., 124 (23), 231102 (2018). DOI: 10.1063/1.5054046
- A.I. Stognij, N.N. Novitskii, O.M. Stukalov, Tech. Phys. Lett., 28 (1), 17 (2002). DOI: 10.1134/1.1448630
- M.V. Thompson, Nucl. Instrum. Meth. Phys. Res. B, 18 (1-6), 411 (1986). DOI: 10.1016/S0168-583X(86)80067-2
- G. Falcone, La Rivista del Nuovo Cimento, 13 (1), 1 (1990)
- J.P. Biersack, W. Eckstein, Appl. Phys. A, 34 (2), 73 (1984). DOI: 10.1007/BF00614759
- J. Emsley, The Elements, 2nd ed. (Oxford University Press, 1998)
- L.D. Landau, E.M. Lifshits, Teoreticheskaya fizika (Fismatlit, M., 2004), t. I, s. 63--65 (in Russian)
- Y. Yamamura, H. Tawara, Atom. Data Nucl. Data Tabl., 62 (2), 149 (1996). DOI: 10.1006/adnd.1996.0005
- W. Ensinger, Nucl. Instrum. Meth. Phys. Res. B., 127-128, 796 (1997). DOI: 10.1016/S0168-583X(97)00010-4
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.