Low Frequency Magnetoelectric Sensor Without Bias Using Laminated Metglas/Quartz/Metglas Structure
Sun C.1, Yang W.1, He Y.2, Chen L.2, Dong C.2, Liang X.2, Chen H.2, Sun N.-X.2
1State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin, China
2Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts, USA
Email: wryang@hebut.edu.cn

PDF
Tremendous progress has been made on boosting the performance of magnetoelecric sensor to detect low frequency magnetic field signal by frequency multiplication based on magnetolectric composites. In this paper, a novel magnetoelectric sensor based on the laminated Metglas/piezoelectric quartz crystal/Metglas composites structure is presented. The Metglas foils are bonded symmetrically on both sides of the X-cut quartz crystal plate with epoxy. Experiments showed that the ME composites sensor was able to achieved a limit of detection of 11 pT for a low frequency magnetic field 1 Hz without any bias field through frequency multiplication method. The noise power spectrum density of the sensor has also been tested to be 3.93·10-6 V/Hz1/2 at 1 Hz. The results indicate that the proposed sensor has favorable features, which provides a cost-effective and high-performance approach for low frequency magnetic field measurement. Keywords: Low frequency, limit of detection, magnetoelectric sensor, piezoelectric quartz crystal.
  1. J. Zhai, Z. Xing, S. Dong, J. Li, D. Viehland, J. Am. Ceram. Soc., 91 (2), 351 (2008). DOI: 10.1111/j.1551-2916.2008.02259.x
  2. C. Dong, Y. He, M. Li, C. Tu, Z. Chu, X. Liang, H. Chen, Y. Wei, M. Zaeimbashi, X. Wang, H. Lin, Y. Gao, N.X. Sun, IEEE Antennas Wirel. Propag. Lett., 19 (3), 398 (2020). DOI: 10.1109/LAWP.2020.2968604
  3. V.L. Preobrazhensky, L.M. Krutyansky, N. Tiercelin, P. Pernod, Tech. Phys. Lett., 46 (1), 38 (2020). DOI: 10.1134/S1063785020010113
  4. X. Liang, C. Dong, H. Chen, J. Wang, Y. Wei, M. Zaeimbashi, Y. He, A. Matyushov, C. Sun, N.X. Sun, Sensors, 20 (5), 1532 (2020). DOI: 10.3390/s20051532
  5. Z. Chu, M. PourhosseiniAsl, S. Dong, J. Phys. D: Appl. Phys., 51 (24), 243001 (2018). DOI: 0.1088/1361-6463/aac29b
  6. Z. Chu, H. Shi, W. Shi, G. Liu, J. Wu, J. Yang, S. Dong, Adv. Mater., 29 (19), 1606022 (2017). DOI: 10.1002/adma.201606022
  7. J. Ou-Yang, X. Liu, H. Zhou, Z. Zou, Y. Yang, J. Li, Y. Zhang, B. Zhu, S. Chen, X. Yang, J. Phys. D: Appl. Phys., 51 (32), 324005 (2018). DOI: 10.1088/1361-6463/aaced8
  8. S. Zuo, J. Schmalz, M. Ozden, M. Gerken, J. Su, F. Niekiel, F. Lofink, K. Nazarpour, H. Heidari, IEEE Trans. Biomed. Circuits Syst., 14 (5), 971 (2020). DOI: 10.1109/TBCAS.2020.2998290
  9. V.M. Laletin, D.A. Filippov, N.N. Poddubnaya, I.N. Manicheva, G. Srinivasan, Tech. Phys. Lett., 45 (5), 436 (2019). DOI: 10.1134/S1063785019050092
  10. V.M. Laletin, D.A. Filippov, S.E. Mozzharov, I.N. Manicheva, Tech. Phys. Lett., 44 (4), 281 (2018). DOI: 10.1134/S1063785018040065
  11. J.D. Livingst, Phys. Status Solidi A, 70 (2), 591 (1982). DOI: 10.1002/pssa.2210700228

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru