Lasing in Tamm plasmon-based microcavities with intracavity metallic contacts and organic active area
Morozov K. M.
1, Belonovski A. V.
1,2, Girshova E. I.
1,2, Nikolaev V. V.
21ITMO University, St. Petersburg, Russia
2Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
Email: morzconst@gmail.com
Vertical-cavity surface-emitting laser design with organic light-emitting material 4,4'-bis[4-(di- p-tolylamino)styryl]biphenyl and intracavity metal contacts of two types are proposed. In the first design, two Bragg mirrors and two thin metal layers adjacent to the active region utilizes. In the second design one Bragg mirror with a thin metal layer and for the second mirror the thick metal layers uses. Mode structure, the spatial distribution of the optical fields, Purcell factor and the dependence of the output power on the pump power were calculated. Keywords: Tamm plasmon, organic semiconductor, vertical-cavity surface-emitting laser, exciton.
- J.A. Lott, N.N. Ledentsov, V.M. Ustinov, N.A. Maleev, A.E. Zhukov, A.R. Kovsh, M.V. Maximov, B.V. Volovik, Zh.I. Alferov, D. Bimberg, Electron. Lett., 36, 1384 (2000). DOI: 10.1049/el:20000988
- F. Koyama, J. Lightwave Technol., 24, 4502 (2006). DOI: 10.1109/JLT.2006.886064
- S.A. Blokhin, M.A. Bobrov, A.G. Kuz'menkov, A.A. Blokhin, A.P. Vasil'ev, Yu.A. Guseva, M.M. Kulagina, Yu.M. Zadiranov, N.A. Maleev, I.I. Novikov, L.Ya. Karachinsky, N.N. Ledentsov, V.M. Ustinov, Tech. Phys. Lett., 44 (1), 28 (2018). DOI: 10.1134/S1063785018010042.
- M.A. Kaliteevski, A.A. Lazarenko, N.D. Il'inskaya, Yu.M. Zadiranov, M.E. Sasin, D. Zaitsev, V.A. Mazlin, P.N. Brunkov, S.I. Pavlov, A.Yu. Egorov, Plasmonics, 10, 281 (2014). DOI: 10.1007/s11468-014-9806-0
- G.M. Akselrod, E.R. Young, K.W. Stone, A. Palatnik, V. Bulovic, Y.R. Tischler, Phys. Rev. B, 90, 035209 (2014). DOI: 10.1103/PhysRevB.90.035209
- R. Bruckner, M. Sudzius, H. Frob, V.G. Lyssenko, K. Leo, J. Appl. Phys., 109, 103116 (2011). DOI: 10.1063/1.3593188
- K.M. Morozov, P. Pander, L.G. Franca, A.V. Belonovski, E.I. Girshova, K.A. Ivanov, D.A. Livshits, N.V. Selenin, G. Pozina, A.P. Monkman, M.A. Kaliteevski, J. Phys. Chem. C, 125, 8376 (2021). DOI: 10.1021/acs.jpcc.1c02432
- K.M. Morozov, E.I. Girshova, A.R. Gubaidullin, K.A. Ivanov, G. Pozina, M.A. Kaliteevski, J. Phys.: Condens. Matter, 30, 435304 (2018). DOI: 10.1088/1361-648X/aae18c
- M. Koschorreck, R. Gehlhaar, V.G. Lyssenko, M. Swoboda, M. Hoffmann, K. Leo, Appl. Phys. Lett., 87, 181108 (2005). DOI: 10.1063/1.2125128
- G. van Soest, A. Lagendijk, Phys. Rev. E, 65, 047601 (2002). DOI: 10.1103/PhysRevE.65.047601
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.