Influence of external electric field on optical breakdown in high-speed flow
Zudov V.N. 1, Tupikin A. V. 2
1Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Kutateladze Institute of Thermophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: zudov@itam.nsc.ru, tupikin@itp.nsc.ru

PDF
The influence of an electric field on the plasma of an optical discharge in subsonic and supersonic air flows has been studied experimentally. The presence of a weak electric field practically does not affect the size of the plasma formation, but, regardless of the configuration of the field lines and the polarity of the applied voltage, it leads to a decrease in the probability of optical breakdown. The experiment has shown that the plasma created by focused laser radiation is very sensitive to the presence of an electric field. When a voltage exceeding 22 kV was applied to the ring electrodes, powerful quasi-stationary streamers were formed in the flow. The presence of an optical discharge plasma made it possible to create an electric discharge in fields with an intensity below the breakdown threshold of the medium. The effect of quenching and the processes of development of an optical discharge were studied depending on the speed and characteristics of the electric field. Quenching of the optical discharge was observed when a voltage of 22 kV and higher was applied. Despite the preservation of the geometric dimensions of the optical discharge, the high-temperature region in the flow can be increased by using electric streamers. This leads to an increase in the energy supplied to the flow, and thus allows combustion to be initiated and flame stabilized at higher flow rates. Keywords: experimental modeling, laser radiation, optical breakdown, electric field, electric discharge, sub- and supersonic air flow.
  1. Yu.P. Raizer. Lazernaya iskra i rasprostraneniye razryadov (Nauka, M., 1974) (in Russian)
  2. E.I. Asinovsky, L.M. Vasilyak, O.P. Nesterkin. TVT, 35 (6), 858 (1997) (in Russian)
  3. O.B. Danilychev, S.A. Tulsky. ZhTF, 48, 2040 (1978) (in Russian)
  4. S.B. Leonov, A.A. Firsov, M.A. Shurupov, J.B. Michael, M.N. Shneider, R.B. Miles, N.A. Popov. Phys. Plasmas, 19, 123502 (2012). https://doi.org/10.1063/1.4769261
  5. A. Houard, Y. Liu, B. Prade, V.T. Tikhonchuk, A. Mysyrowicz. Phys Rev. Lett., 100, 255006 (2008)
  6. D.W. Hahn, N. Omenetto. Appl. Spectrosc., 64, 335A (2010)
  7. D.W. Hahn, N. Omenetto. 66, 347 (2012)
  8. M.J. Kushner, R.D. Milroy, W.D. Kimura. J. Appl. Phys., 58, 2988 (1985)
  9. T. Fujii, A. Zhidkov, M. Miki, K. Sugiyama, N. Goto, S. Eto, Y. Oishi, E. Hotta, K. Nemoto. Chinese J. Phys., 52, 440 (2014). DOI: 10.6122/CJP.52.440
  10. V.Ya. Nikulin, S.P. Tsybin, A.E. Gurey. Kratkie soobshcheniya po fizike FIAN, 6, 15 (2017) (in Russian)
  11. V. Kumar, R.K. Thareja. J. Appl. Phys., 64, 5269 (1988)
  12. E. Takahashi, S. Sakamoto, O. Imamura, Y. Ohkuma, H. Yamasaki, H. Furutani, K. Akihama. J. Phys. D Appl. Phys., 52, 485501 (2019)
  13. J. Tulip, H. Seguin. Appl. Phys. Lett., 23, 135 (1973)
  14. E. Takahashi, S. Kato. OSA Continuum., 3, 3030 (2020). DOI: 10.1364/OSAC.399530
  15. R.A. Mullen, J.N. Matossian. Opt. Lett., 15, 601 (1990)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru