Analysis of the response of a liquid surface to the pulse action of an inclined gas jet at low Reynolds number
Savenkov A. P. 1, Sychev V. A.1
1Tambov State Technical University, Tambov, Russia
Email: savencow@yandex.ru

PDF
A mathematical description of the motion of a cavity on the liquid surface under an oblique action of a gas jet is obtained using the well-known expressions for the movement of a gas bubble in a liquid. The boundary of the viscous drag force domination over the form drag force is determined. The impingement of the gas jet on the liquid surface is considered as a dynamic object of the automatic control theory. It is found that the dynamic properties of the two-phase system "gas jet-liquid" are described by the integrator equations. Using a specially designed setup, the transient response of the "gas jet-liquid" system were experimentally obtained for the aerodynamic action at angles of 20 and 50o to the surfaces of liquids with the viscosities of 0.71 and 26.1 Pa·s (Reynolds number Re<2). The research results are necessary for the analysis of the non-contact aerodynamic method of liquid viscosity measurements. Keywords: gas jet, impingement, liquid surface, measurement, non-contact, pulse, viscosity.
  1. N. Dyussekenov, S.S. Park, H.Y. Sohn. Miner. Process. Extr. M., 120 (1), 21 (2011). DOI: 10.1179/037195510X12791826058136
  2. J. Maruyama, K. Ito, M. Ando, J. Okada, K. Ito. ISIJ Int., 60 (6), 1375 (2020). DOI: 10.2355/isijinternational.ISIJINT-2019-653
  3. Y. Chen, A.K. Silaen, C.Q. Zhou. Processes, 8 (6), 700 (2020). DOI: 10.3390/pr8060700
  4. G.Q. Liu, G.X. Zhang, K. Liu. Metalurgija, 59 (3), 299 (2020)
  5. S. Sabah, G. Brooks. Ironmaking \& Steelmaking, 43 (6), 473 (2016). DOI: 10.1080/03019233.2015.1113755
  6. D. Munoz-Esparza, J.-M. Buchlin, K. Myrillas, R. Berger. Appl. Math. Model., 36 (6), 2687 (2012). DOI: 10.1016/j.apm.2011.09.052
  7. C.J. Ojiako, R. Cimpeanu, H.C.H. Bandulasena, R. Smith, D. Tseluiko. J. Fluid Mech., 905, A18 (2020). DOI: 10.1017/jfm.2020.751
  8. B.B. Baldanov, A.P. Semenov, Ts.V. Ranzhurov, E.O. Nikolaev, S.V. Gomboeva. Tech. Phys., 60 (11), 1729 (2015). DOI: 10.1134/S1063784215110043
  9. A. Stancampiano, E. Simoncelli, M. Boselli, V. Colombo, M. Gherardi. Plasma Sourc. Sci. Tech., 27 (12), 125002 (2018). DOI: 10.1088/1361-6595/aae9d0
  10. S. Park, W. Choe, H. Lee, J.Y. Park, J. Kim, S.Y. Moon, U. Cvelbar. Nature, 592, 49 (2021). DOI: 10.1038/s41586-021-03359-9
  11. T.R. Brubaker, K. Ishikawa, H. Kondo, T. Tsutsumi, H. Hashizume, H. Tanaka, S.D. Knecht, S.G. Bilen, M. Hori. J. Phys. D: Appl. Phys., 52 (7), 075203 (2018). DOI: 10.1088/1361-6463/aaf460
  12. W. Fu, X. Zhang. Optik, 207, 164451 (2020). DOI: 10.1016/j.ijleo.2020.164451
  13. D.M. Mordasov, M.M. Mordasov. Tech. Phys., 62 (3), 490 (2017). DOI: 10.1134/S1063784217030148
  14. A.H. Pfund, E.W. Greenfield. Ind. Eng. Chem., 8 (2), 81 (1936). DOI: 10.1021/ac50100a001
  15. M.M. Mordasov, A.P. Savenkov, M.E. Safonova, V.A. Sychev. Meas. Tech., 61 (6), 613 (2018). DOI: 10.1007/s11018-018-1473-7
  16. B.V. Deryagin, V.V. Karasev, Russ. Chem. Rev., 57 (7), 634 (1988). DOI: 10.1070/RC1988v057n07ABEH003379
  17. A.P. Savenkov, M.M. Mordasov, V.A. Sychev. Meas. Tech., 63 (9), 722 (2020). DOI: 10.1007/s11018-021-01845-0
  18. A. He, A. Belmonte. Phys. Fluid., 22 (4), 042103 (2010). DOI: 10.1063/1.3327209
  19. E. Ghabache, T. Seon, A. Antkowiak. J. Fluid. Mech., 761, 206 (2014). DOI: 10.1017/jfm.2014.629
  20. A. Balabel. Emirates J. Engineer. Res., 12 (3), 35 (2007)
  21. M.M. Mordasov, A.P. Savenkov. Tech. Phys. Lett., 42 (9), 940 (2016). DOI: 10.1134/S1063785016090224
  22. M. Adib, M.A. Ehteram, H.B. Tabrizi. Appl. Math. Model., 62, 510 (2018). DOI: 10.1016/j.apm.2018.05.031
  23. R.D. Collins, H. Lubanska. Brit. J. Appl. Phys., 5 (1), 22 (1954). DOI: 10.1088/0508-3443/5/1/306
  24. J. Solorzano-Lopez, R. Zenit, M.A. Rami rez-Argaez. Appl. Math. Model., 35 (10), 4991 (2011). DOI: 10.1016/j.apm.2011.04.012
  25. O. McRae, A. Gaillard, J.C. Bird. Phys. Rev. E, 96 (1), 013112 (2017). DOI: 10.1103/PhysRevE.96.013112
  26. X.-T. Wu, R. Zhu, G.-S. Wei, K. Dong. J. Min. Metall. B, 56 (3), 307 (2020). DOI: 10.2298/JMMB190225019W
  27. R.B. Kalifa, S.B. Hamza, N.M. Sai d, H. Bournot. Int. J. Mech. Sci., 165, 105220 (2020). DOI: 10.1016/j.ijmecsci.2019.105220
  28. X. Zhou, Q. Yue, Z. Di, D. Sheng, M. Ersson. JOM, 73 (10), 2953 (2021). DOI: 10.1007/s11837-021-04810-y
  29. M.M. Mordasov, A.P. Savenkov, K.E. Chechetov. Tech. Phys., 61 (5), 659 (2016). DOI: 10.1134/S1063784216050170
  30. V.N. Petrov, A.S. Shabalin, V.F. Sopin, S.B. Petrov, S.L. Malyshev. Vestn. tekhnolog. un-ta, 20 (2), 85 (2017) (in Russian)
  31. M.M. Mordasov, A.P. Savenkov. Meas. Tech., 58 (7), 796 (2015). DOI: 10.1007/s11018-015-0796-x
  32. V.A. Makarov, F.A. Korolev, R.E. Tyutyaev. IOP Conf. Ser.: Mater. Sci. Eng., 1047, 012014 (2021). DOI: 10.1088/1757-899X/1047/1/012014
  33. P. Snabre, F. Magnifotcham. Eur. Phys. J. B Condens. Matter., 4 (3), 369 (1998). DOI: 10.1007/s100510050392
  34. G.I. Kelbaliyev. Theor. Found. Chem. Eng., 45 (3), 248 (2011). DOI: 10.1134/S0040579511020084
  35. W.R. Quinn. Eur. J. Mech. B/Fluids, 25 (3), 279 (2006). DOI: 10.1016/j.euromechflu.2005.10.002
  36. J. Mi, P. Kalt, G.J. Nathan, C.Y. Wong. Exp. Fluid., 42 (4), 625 (2007). DOI: 10.1007/s00348-007-0271-9
  37. M.M. Mordasov, A.P. Savenkov, M.E. Safonova, V.A. Sychev. Optoelectron., Instrum. Data Process., 54 (1), 69 (2018). DOI: 10.3103/S8756699018010119

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru