Quasi-periodic resonances and the Landau-Hopf scenario
Kuznetsov A. P. 1, Sedova Yu. V. 1
1Saratov Branch, Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Saratov, Russia
Email: apkuz@rambler.ru, sedovayv@yandex.ru

PDF
The effect of resonances on a cascade of quasi-periodic bifurcations, the sequence of which occur in accordance with the Landau-Hopf scenario, is examined using an ensemble of discrete van der Pol - Duffing oscillators. With small frequency detunings of the oscillators, tongues of quasi-periodic modes emerge, analogous to Arnold tongues, and in the region of the highest frequency oscillations. With a large frequency detuning, the general structure of regimes transformation in accordance with Landau-Hopf scenario remains, but the quasi-periodic Hopf bifurcation in the cascade can be replaced by a saddle-node bifurcation of torus. Narrow resonance regions based on tori of different dimensions are also observed. At high values of the Duffing oscillator-like nonlinear parameter, resonances can destroy high-dimensional tori in the Landau-Hopf cascade. Keywords: quasi-periodicity, resonance, Landau-Hopf scenario, Lyapunov exponents, bifurcations.
  1. P.S. Linsay, A.W. Cumming. Physica D, 40 (2), 196 (1989). DOI: 10.1016/0167-2789(89)90063-8
  2. L. Borkowski, P. Perlikowski, T. Kapitaniak, A. Stefanski. Phys. Rev. E, 91 (6), 062906 (2015). DOI: 10.1103/PhysRevE.91.062906
  3. I. Manimehan, K. Thamilmaran, P. Philominathan. Int. J. Bifurcation Chaos, 21 (7), 1987 (2011). DOI: 10.1142/S0218127411029586
  4. V. Anishchenko, S. Nikolaev, J. Kurths. Phys. Rev. E, 73 (5), 056202 (2006). DOI: 10.1103/PhysRevE.73.056202
  5. V.S. Anishchenko, S.M. Nikolaev. Int. J. Bifurcation Chaos, 18 (9), 2733 (2008). DOI: 10.1142/S0218127408021956
  6. V.S. Anishchenko, S.M. Nikolaev. Rus. J. Nonlin. Dyn., 2 (3), 267 (2006). DOI: 10.20537/nd0603001
  7. N. Inaba, K. Kamiyama, T. Kousaka, T. Endo. Physica D, 311, 17 (2015). DOI: 10.1016/j.physd.2015.08.008
  8. A.P. Kuznetsov, S.P. Kuznetsov, N.A. Shchegoleva, N.V. Stankevich. Physica D, 398, 1 (2019). DOI: 10.1016/j.physd.2019.05.014
  9. A.P. Kuznetsov, Yu.V. Sedova, N.V. Stankevich. Differentsial'nye uravneniya i processy upravleniya, 1, 54 (2023) (in Russian). DOI: 10.21638/11701/spbu35.2023.105
  10. A.P. Kuznetsov, I.R. Sataev, Y.V. Sedova. J. Appl. Nonlin. Dyn., 7 (1), 105 (2018). DOI: 10.5890/JAND.2018.03.009
  11. N.G. Koudafoke, C.H. Miwadinou, A.V. Monwanou, A.L. Hinvi, J.C. Orou. J. Dyn. Control, 8 (3), 779 (2020). DOI: 10.1007/s40435-019-00595-w
  12. A.E. Botha, Y.M. Shukrinov, J. Tekie, M.R. Kolahchi. Phys. Rev. E, 107 (2), 024205 (2023). DOI: 10.1103/PhysRevE.107.024205
  13. T. Bakri, Y.A. Kuznetsov, F. Verhulst. J. Dyn. Differ. Equat., 27, 371 (2015). DOI: 10.1007/s10884-013-9339-9
  14. A.N. Kulikov. Differen. Equat., 48, 1258 (2012). DOI: 10.1134/S0012266112090066
  15. A.N. Kulikov, D.A. Kulikov. Theor. Mathem. Phys., 203 (1), 501 (2020). DOI: 10.1134/S0040577920040066
  16. N.M. Evstigneev. Open J. Fluid Dyn., 6 (4), 496 (2016). DOI: 10.4236/ojfd.2016.64035
  17. J. Sanchez Umbri a, M. Net. Phys. Fluids, 33 (11), 114103 (2021). DOI: 10.1063/5.0064465
  18. F. Garcia, J. Ogbonna, A. Giesecke, F. Stefani F. Commun. Nonlinear Sci. Numer. Simul., 118, 107030 (2023). DOI: 10.1016/j.cnsns.2022.107030
  19. R.A. Remillard, M.P. Muno, J.E. McClintock, J.A. Orosz. Astrophys. J., 580 (2), 1030 (2002). DOI: 10.1086/343791
  20. A.R. Ingram, S.E. Motta. New Astronomy Rev., 85, 101524 (2019). DOI: 10.1016/j.newar.2020.101524
  21. M. Sekikawa, N. Inaba, K. Kamiyama, K. Aihara. Chaos, 24 (1), 013137 (2014). DOI: 10.1063/1.4869303
  22. S. Hidaka, N. Inaba, M. Sekikawa, T. Endo. Phys. Lett. A, 379 (7), 664 (2015). DOI: 10.1016/j.physleta.2014.12.022
  23. K. Kamiyama, N. Inaba, M. Sekikawa, T. Endo. Physica D, 289, 12 (2014). DOI: 10.1016/j.physd.2014.09.001
  24. A.P. Kuznetsov, Y.V. Sedova. Int. J. Bifurcation Chaos, 24 (7), 1430022 (2014). DOI: 10.1142/S0218127414300225
  25. A.P. Kuznetsov, Y.V. Sedova, N.V. Stankevich. Int. J. Bifurcation Chaos, 33 (15), 2330037 (2023). DOI: 10.1142/S0218127423300379
  26. L.D. Landau. Dokl. Akad. Nauk USSR., 44, 311 (1944)
  27. E.A. Hopf. Commun. Pure Appl. Mathem., 1 (4), 303 (1948)
  28. A.N. Kulikov. J. Mathem. Sci., 262 (6), 809 (2022). DOI: 10.1007/s10958-022-05859-z
  29. R. Herrero, J. Farjas, F. Pi, G. Orriols. Chaos, 32 (2), 023116 (2022). DOI: 10.1063/5.0069878
  30. R. Herrero, J. Farjas, F. Pi, G. Orriols. Multiplicity of Time Scales in Complex Systems: Challenges for Sciences and Communication II (Springer Nature, Switzerland, 2023), p. 463. DOI: 10.1007/16618_2023_69
  31. D. Ruelle, F. Takens. Les rencontres physiciens-mathematiciens de Strasbourg-RCP25 (1971), 12, p. 1
  32. V.S. Afraimovich, L.P. Shilnikov. Amer. Math. Soc. Transl., 149 (2), 201 (1991). DOI: 10.1090/trans2/149/12
  33. A.P. Kuznetsov, S.P. Kuznetsov, I.R. Sataev, L.V. Turukina. Phys. Lett. A, 377 (45-48), 45 (2013). DOI: 10.1016/j.physleta.2013.10.013
  34. A. Pikovsky, M. Rosenblum, J. Kurths. Synchronization. A universal concept in nonlinear sciences (Cambridge university press, 2001), DOI: 10.1017/CBO9780511755743
  35. A.P. Kuznetsov, E. S. Seliverstova, D.I. Trubetskov, L.V. Tyuryukina. Izvestiya vuzov. PND, 22 (4), 3 (2014) (in Russian). DOI: 10.18500/0869-6632-2014-22-4-3-42
  36. A.P. Kuznetsov, L.V. Turukina. Physica D, 470, 134425 (2024). DOI: 10.1016/j.physd.2024.134425
  37. V.I. Arnold. Izvestiya AN SSSR. Ser. matematicheskaya, 25 (1), 21 (1961) (in Russian)
  38. V.I. Arnold. Chaos, 1 (1), 20 (1991). DOI: 20-24. 10.1063/1.165812
  39. R. Vitolo, H. Broer, C. Simo. Regular Chaotic Dynamics, 16, 154 (2011). DOI: 10.1134/S1560354711010060
  40. M. Komuro, K. Kamiyama, T. Endo, K. Aihara. Int. J. Bifurcation Chaos, 26 (7), 1630016 (2016). DOI: 10.1142/S0218127416300160
  41. R. Vitolo, H. Broer, C. Simo. Nonlinearity, 23 (8), 1919 (2010). DOI: 10.1088/0951-7715/23/8/007
  42. N.V. Stankevich, N.A. Shchegoleva, I.R. Sataev, A.P. Kuznetsov. J. Comput. Nonlin. Dyn., 15 (11), 111001 (2020). DOI: 10.1115/1.4048025
  43. N.C. Pati. Chaos, 34 (8), 083126 (2024). DOI: 10.1063/5.0208457
  44. A.G. Balanov, N.B. Janson, D.E. Postnov, O. Sosnovtseva. Synchronization: from simple to complex (Springer, Berlin, Heidelberg, 2009), DOI: 10.1007/978-3-540-72128-4
  45. A.P. Kuznetsov, J.P. Roman. Physica D, 238 (16), 1499 (2009). DOI: 10.1016/j.physd.2009.04.016
  46. A.P. Kuznetsov, J.P. Roman. Nonlinear Phenomena in Complex Systems, 12 (1), 54 (2009)
  47. G.M. Zaslavskii, R.Z. Sagdeev, D.A. Usikov, A.A. Chernikov. Soviet Phys. Usp., 31 (10), 887 (1988). DOI: 10.1070/PU1988v031n10ABEH005632
  48. G.M. Zaslavsky. The physics of chaos in Hamiltonian systems (Imperial College Press; Distributed by World Scientific, 2007), DOI: 10.1142/P507
  49. A.D. Morozov. Rezonansy, cikly i haos v kvazikonservativnyh sistemah (RHD, Moskva-Izhevsk, 2005) (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru