Numerical study of the current-voltage characteristics of a weakly conducting liquid between extended parallel electrodes
Petukhov M. I.1, Demin V. A.1
1Perm State University, Perm, Russia
Email: geniusmaxp@yandex.ru, demin@psu.ru

PDF
The article presents the results of solution of the problem of direct electric current flow through a weakly conducting liquid located between two flat metal electrodes. This solution takes into account the influence of spatial inhomogeneity of concentration and the degree of dissociation of ion pairs on electromigration processes. The behavior of ions and ion pairs is described using electrokinetic equations. This system of equations, combined with boundary conditions for concentration fluxes, allows one to model the redox process at the electrodes, during which steady-state concentration and electric potential profiles are established in the volume between the electrodes. It is shown that the significant nonlinearity of the processes under consideration leads to topologically different current-voltage characteristics, which continuously transform into one another as the parameters of the problem change. From a practical standpoint, this study allows for a more in-depth analysis of the phenomena occurring during the technological process of protonation of a lithium niobate crystal immersed in molten benzoic acid. This process is used to create channel waveguides in photonic integrated circuits. The proposed approach to describing electrical conductivity makes it possible to exclude abstract boundary conditions used in earlier works. Keywords: Current-voltage characteristics, liquid dielectric, numerical simulation.
  1. V.G. Levich. Fiziko-himicheskaya gidrodinamika (Gos. izd-vo Fizmatlit, M., 1959) (in Russian)
  2. G.A. Ostroumov. Vzaimodejstvie elektricheskih i gidrodinamicheskih polej (Nauka, M., 1979) (in Russian)
  3. G.Z. Gershuni, E.M. Zhuhovickij, A.A. Nepomnyashchij. Ustojchivost' konvektivnyh techenij (Nauka, M., 1989) (in Russian)
  4. V.A. Saranin. Ustojchivost' ravnovesiya, zaryadka, konvekciya i vzaimodejstvie zhidkih mass v elektricheskih polyah (Regulyarnaya i haoticheskaya dinamika, M., 2009) (in Russian)
  5. E.A. Demekhin, G.S. Ganchenko, A. Navarkar, S. Amiroudine. Phys. Fluids, 28, 0922003 (2016). DOI: 10.1063/1.4961976
  6. G.I. Skanavi. Fizika dielektrikov. Oblast' slabyh poley (Gos. izd-vo tekhniko-teoreticheskoj lit-ry, M., 1949) (in Russian)
  7. A. Nikuradze. Zhidkie dielektriki (Ob'edinennoe nauchno-tekhnicheskoe izd-vo NKTP SSSR, M., 1936) (in Russian)
  8. I. Adamchevskij. Elektricheskaya provodimost' zhidkih dielektrikov (Energiya, L., 1972) (in Russian)
  9. Yu.Ya. Gurevich, Yu.I. Kharkats. Elektrokhimiya, 15 (1), 94 (1979) (in Russian)
  10. Yu.I. Kharkat. Elektrokhimiya, 21 (7), 974 (1985) (in Russian)
  11. A.N. Frumkin, V.S. Bagockiy, Z.A. Iofa, B.N. Kabanov. Kinetika elektrodnykh processov (Izd-vo Moskovskogo un-ta, M., 1952) (in Russian)
  12. V.V. Nikonenko, S.A. Mareev, N.D. Pis'menskaya, A.M. Uzdenova, A.V. Kovalenko, M.Kh. Urtenov, G. Pourcelly. Russ. J. Electrochem., 53 (10), 1122 (2017). DOI: 10.1134/S1023193517090099
  13. H.J. Plumley. Phys. Rev., 59 (2), 200 (1941). DOI: 10.1103/PhysRev.59.200
  14. F. Pontiga, A. Castellanos. Phys. Fluids, 6, 1684 (1994). DOI: 10.1063/1.868231
  15. O. Nekrasov, B. Smorodin. Microgravity Sci. Technol., 34, 75 (2022). DOI: 10.1007/s12217-022-10002-3
  16. V.A. Ilyin, N.I. Zadorozhny. Vestnik Permskogo un-ta. Fizika, 4, 27 (2022) (in Russian). DOI: 10.17072/1994-3598-2022-4-27-33
  17. A.A. Vartanyan, V.V. Gogosov, V.A. Polyansky, G.A. Shaposhnikova. J. Electrostat., 24, 431 (1989). DOI: 10.1016/0304-3886(89)90072-7
  18. F.P. Grosu, M.K. Bologa, V.V. Bloshchitsyn, Yu.K. Stishkov, I.V. Kozhevnikov. Elektronnaya obrabotka materialov, 43 (5), 16 (2007) (in Russian)
  19. V.V. Bloshchitsyn, Yu.K. Stishkov, A.M. Shaposhnikov. Vestnik SPb un-ta, 10 (3), 114 (2008) (in Russian)
  20. J. Schiffbauer, N.Yu. Ganchenko, G.S. Ganchenko, E.A. Demekhin. Biomicrofluidics, 12, 064107 (2018). DOI: 10.1063/1.5066195
  21. S. Melnikov. Membranes, 13 (1), 47 (2023). DOI: 10.3390/membranes13010047
  22. I. Rubinstein, E. Staude, O. Kedem. Desalination, 69 (2), 101 (1988). DOI: 10.1016/0011-9164(88)80013-4
  23. G. Yossifon, P. Mushenheim, Yu. Chang, H. Chang. Phys. Rev. E, 79, 046305 (2009). DOI: 10.1103/PhysRevE.79.046305
  24. L. Hernandez-Perez, M.C. Marti-Calatayud, M.T. Montanes, V. Perez-Herranz. Membranes, 13, 363 (2023). DOI: 10.3390/membranes13030363
  25. A.V. Kovalenko, I.V. Gudza, A.V. Pisisskiy, N.O. Chubyr, M.H. Urtenov. Modelirovanie, optimizaciya i informacionnye tekhnologii, 9 (3), 1 (2021) (in Russian). DOI: 10.26102/2310-6018/2021.34.3.011
  26. A. Uzdenova. Membranes, 9, 39 (2019)
  27. A.I. Zhakin. Phys. Usp., 46 (1), 45 (2003). DOI: 10.1070/PU2003v046n01ABEH001141
  28. V.I. Zabolotskii, N.V. Shel'deshov, N.P. Gnusin. Russ. Chem. Rev., 57 (8), 801 (1988). DOI: https://doi.org/10.1070/RC1988v057n08ABEH003389
  29. J.L. Jackel, C.E. Rice, J.J. Veselka. Appl. Phys. Lett., 41, 607 (1982). DOI: 10.1063/1.93615
  30. S.T. Vohra, A.R. Mickelson, S.E. Asher. J. Appl. Phys., 66, 1561 (1989). DOI: 10.1063/1.343751
  31. V.A. Demin, M.I. Petukhov, R.S. Ponomarev, M. Kuneva. Langmuir, 39 (31), 10855 (2023). DOI: 10.1021/acs.langmuir.3c00957
  32. V.A. Demin, M.I. Petukhov. Microgravity Sci. Tech., 36, Art. N 33 (2024). DOI: 10.1007/s12217-024-10113-z
  33. V.A. Demin, M.I. Petukhov. J. Siberian Federal University. Mathematics Phys., 18 (1), 100 (2025)
  34. S.S. Mushinsky, A.M. Minkin, I.V. Petukhov, V.I. Kichigin, D.I. Shevtsov, L.N. Malinina, A.B. Volyntsev, M.M. Neradovskiy, V.Ya. Shur. Ferroelectrics, 476 (1), 84 (2015). DOI: 10.1080/00150193.2015.998530
  35. K.M. Mambetova. Avtoref. kand. diss. (Tomsk, Tomskiy gos. un-t sistem upravleniya i radioelektroniki, 2012) (in Russian)
  36. V.I. Kichigin, I.V. Petukhov, A.R. Kornilitsyn, S.S. Mushinsky. Kondensirovannye sredy i mezhfaznye granitsy, 24 (3), 315 (2022) (in Russian). DOI: 10.17308/kcmf.2022.24/9853
  37. L. Onsager. J. Chem. Phys., 2, 599 (1934). DOI: 10.1063/1.1749541
  38. V.A. Demin, M.I. Petukhov, R.S. Ponomarev. Surface Eng. Appl. Electrochem., 59 (3), 321 (2023). DOI: 10.3103/S1068375523030055

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru