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Quasi-periodic resonances and the Landau-Hopf scenario
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The effect of resonances on a cascade of quasi-periodic bifurcations, the sequence of which occur in accordance

with the Landau-Hopf scenario, is examined using an ensemble of discrete van der Pol - Duffing oscillators. With

small frequency detunings of the oscillators, tongues of quasi-periodic modes emerge, analogous to Arnold tongues,

and in the region of the highest frequency oscillations. With a large frequency detuning, the general structure of

regimes transformation in accordance with Landau-Hopf scenario remains, but the quasi-periodic Hopf bifurcation

in the cascade can be replaced by a saddle-node bifurcation of torus. Narrow resonance regions based on tori of

different dimensions are also observed. At high values of the Duffing oscillator-like nonlinear parameter, resonances

can destroy high-dimensional tori in the Landau-Hopf cascade.

Keywords: quasi-periodicity, resonance, Landau-Hopf scenario, Lyapunov exponents, bifurcations.

DOI: 10.61011/TP.2025.11.62227.46-25

Introduction

Quasi-periodic oscillations are quite common in nature

and technology. They can be characterized by different,

sometimes quite a large number of incommensurable fre-

quencies. Such examples can be found in radiophysics

and electronics [1–9], in the theory of Josephson con-

tacts [10–12], mechanics and hydrodynamics [13–18], many

examples are known in astrophysics [19,20], as well as

in other areas. Quasi-periodic oscillations with different

numbers of incommensurable frequencies are also studied

using examples of model discrete systems (maps), in

particular, in Ref. [21–25].

At one time, Landau and Hopf associated the scenario of

the emergence of complex (chaotic) dynamics with quasi-

periodic oscillations [26,27]. The scenario assumes a gradual

increase in the number of incommensurable frequencies

due to the coupling of new oscillatory modes. This

process occurs through a cascade of quasi-periodic Hopf

bifurcations, as a result of which invariant tori of ever higher

dimension are born in the phase space. A general discussion

about such a scenario is discussed in many works, for

example, in Ref. [14–17,28–30].

Formally, the Landau-Hopf scenario assumes an infinite

number of quasi-periodic bifurcations. However, more

realistic situations where the number of bifurcations is

relatively high, but of course, are of considerable interest

from the point of view of the mechanisms of occurrence

of complex oscillations. The Landau-Hopf cascade can

be disrupted by destroying the torus to create chaos.

As you know, Ruel and Takens drew attention to this

point [31], which caused a subsequent discussion and an

active discussion. At the same time, Afraimovich and

Shilnikov found that a two-dimensional two-frequency torus

can collapse with the formation of chaos [32]. However,

there are now known examples of stable tori of sufficiently

high dimension corresponding to four-, five-, and even six-

frequency oscillations [4–6,8–10,18,21,22,24,25].

The cascade of quasi-periodic bifurcations can also be

limited by a finite number of oscillation modes of the

system itself. For example, an ensemble of five self-

oscillating van der Pol oscillators is considered in Ref. [33]
that demonstrates five steps of the Landau-Hopf scenario.

Let us emphasize here the universal character of the van der

Pol system, which describes both a radiophysical generator

and systems of a wide variety of nature, see Ref. [34] and
the review in Ref. [35]. Interestingly, the interaction of

the [33] system with an additional chaotic subsystem does

not decrease, but increases the number of quasi-periodic

bifurcations and the possible dimension of the torus [36].

From the point of view of oscillation theory, it seems that

another mechanism for breaking the cascade of Landau-

Hopf bifurcations may be the occurrence of synchronization

and corresponding resonances on high-dimensional tori. It

is this aspect that we will consider in this paper.

As is known, in the simplest case of two-frequency

quasi-periodicity, resonant limit cycles can occur on the

surface of the corresponding attractor in the form of an

invariant torus. This transition is provided by the saddle-

node bifurcation of the limit cycles. In this case, a

structure of Arnold tongues embedded in the region of

quasiperiodicity arises on the parameter plane [34,37,38].
Over time, it became known that synchronization of multi-

frequency quasi-periodic oscillations is also possible, when

a torus of a smaller dimension is born on the surface

of a high-dimensional torus. Such a transition occurs

through the bifurcation of the tori [39,40] caused by the

collision of the stable and saddle tori. Early examples
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for radiophysical generators can be found, for example, in

Ref. [4–6]. At the same time, on the parameter plane, in a

situation of synchronization of multi-frequency oscillations,

a pattern may appear similar to the Arnold tongue system,

but in the form of tongues of quasi-periodic modes. It

has been observed in model maps in Ref. [25,41], coupled
radiophysical generators [8,9,42], predator-prey system [43]
and other examples.

In this paper, we will examine the relationship between

the Landau-Hopf bifurcation diagram and potential reso-

nances.

1. Studied system. Case of absence of
resonances

A system of five dissipatively coupled non-identical van

der Pol oscillators was proposed in Ref. [33,36] in the

context of the Landau-Hopf scenario. Five steps of the

Landau-Hopf scenario are consistently observed in such a

system, when the coupling value decreases (analogous to

the Reynolds number). As is known, for two coupled Van

der Pol oscillators, high resonances, unlike the main one,

are poorly expressed, especially in the case of small values

of the excitation parameters [44,45]. Therefore, firstly,

we use increased values of these parameters compared to

Ref. [33,36]. Secondly, we will supplement this model with

cubic nonlinearity of the Duffing oscillator type. Physically,

this nonlinearity is responsible for the non-isochronous

nature of small oscillations [34]. In the case of two

oscillators, this leads to a much more pronounced system

of resonant tongues of different orders [46].
We also use a discrete version of the system to simplify

the analysis. It is obtained by replacing the time derivatives

in the original equations with finite differences. A similar

technique was proposed in early papers on nonlinear

physics [47–49]. It is now widely used in a wide variety of

fields: radiophysics, population dynamics, neurodynamics,

theory of gene networks, as well as in describing basic

models of oscillation theory and nonlinear dynamics (a
number of specific examples can be found in the overview

section [25]). Moreover, if we use a small value of the

discretization parameter, then the arrangement of regions

in the parameter space will be very close to the prototype

system with continuous time. At the same time, analyzing

a discrete system is much simpler.

Taking into account these observations, the system under

study has the form

x i,n+1 = x i,n + εy i,n+1,

y i,n+1 =y i,n + ε(λi − x2
i,n)y i,n − ε(1 + 1i−1)x i,n

−εβx3
i,n − ε

µ

4

5∑

j=1

(y i,n − y j,n) (1)

Here x i,n, y i,n are variables (coordinate and velocity) of

the ith oscillator, λi is its excitation parameter, β is the
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Figure 1. Chart of Lyapunov exponents of an ensemble of five

discrete van de Pol oscillators (1) for λ1 = 0.1, λ2 = 0.2, λ3 = 0.3,

λ4 = 0.4, λ5 = 0.5, ε = 0.1. Cubic nonlinearity parameter β = 0.

parameter of additional nonlinearity according to the type

of Duffing oscillator, µ is the magnitude of the dissipative

coupling. 1i−1 = 1(i − 1)/4 are frequency detunings of the

oscillators relative to the first one, the frequency of which

is taken as one. In this case, the mutual detunings of

the oscillators are controlled by a single parameter 1. In

addition, n is the iteration number, ε is the discretization

parameter.

Following Ref. [33,36], we first put λ1 = 0.1, λ2 = 0.2,

λ3 = 0.3, λ4 = 0.4, λ5 = 0.5. Here and further we will use

the small value ε = 0.1. For further discussion, we will first

present the case of the absence of additional nonlinearity

β = 0. Fig. 1 shows the corresponding chart of Lyapunov

exponents on the frequency detuning coupling value plane

(1, µ). On this chart, areas with different dynamics are

indicated in different colors in accordance with the signature

of the spectrum of Lyapunov exponents 3n, as indicated in

the table. There are six significant exponents in this table,

the rest are always negative. The interpretation of the color

palette is shown to the right of the picture.

When coupling value µ decreases along the right edge

of the chart, with a frequency disorder of 1 = 3, an

equilibrium state E is first observed. Then, as a result of

the Neimark-Sacker bifurcation NS, a stable invariant curve

is separated from it, which corresponds to the birth of the

two-frequency 2T regime. Then, a two-dimensional torus

separates from this curve as a result of quasi-periodic Hopf

bifurcation and a three-frequency 3T regime is born at point

QH1 . Next, a cascade of quasi-periodic Hopf bifurcations

QH2,3,4 occurs, with the gradual birth of four-, five-, and

six-frequency regimes 4T, 5T, and 6T. (As we noted, due

to smallness, ε the configuration of the regions and the

nature of the bifurcations are similar to the case of the flow

system [33], with the exception of an increase in the number

of frequencies occurring by one, which is typical for discrete

systems.)
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Types of regimes and the Lyapunov exponents spectrum for map

Designation Regime type Type of attractor in the map Spectrum of Lyapunov exponents

E Equilibrium Fixed point 31,2,3,4,5,6 < 0

2T Two-frequency quasi-periodic Invariant curve 31 = 0, 32,3,4,5,6 < 0

3T Three-frequency quasi-periodic Two-dimensional torus 31,2 = 0, 33,4,5,6 < 0

4T Four-frequency quasi-periodic Three-dimensional torus 31,2,3 = 0, 34,5,6 < 0

5T Five-frequency quasi-periodic Four-dimensional torus 31,2,3,4 = 0, 35,6 < 0

6T Six-frequency quasi-periodic Five-dimensional torus 31,2,3,4,5 = 0, 36 < 0

C Chaos Chaotic attractor 31 > 0, 32,3,4,5,6 < 0

H Hyperchaos Hyperchaotic attractor 31,2 > 0, 33,4,5,6 < 0

∆
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Figure 2. Chart of Lyapunov exponents of an ensemble of five discrete Van der Pol-Duffing oscillators for β = 1 (a) and its enlarged

fragment (b). The arrow marks the value µ = 0.14 corresponding to the graphs in Fig. 3. Parameter values: λ1 = 0.5, λ2 = 1, λ3 = 1.5,

λ4 = 2, λ5 = 2.5, ε = 0.1.

As can be seen from Fig. 1, there are no resonant

regimes (except for the main resonance 1 = 0) in the case

of small parameters of excitation λ and in the absence of

additional nonlinearity. At the same time, five steps of the

Landau-Hopf cascade are observed with a sufficiently large

frequency detuning 1, with a decrease in the magnitude of

the dissipative coupling µ.

2. Case of quasi-periodic resonances

Now let us increase the control parameters so that

λ1 = 0.5, λ2 = 1, λ3 = 1.5, λ4 = 2, λ5 = 2.5 and select

the value the additional nonlinearity parameter β = 1 by

analogy with Ref. [46]. The corresponding Lyapunov chart

is shown in Fig. 2, a. Now there are characteristic quasi-

periodic resonances. This is especially noticeable for the

six-frequency region. The corresponding enlarged fragment

of the chart is shown in Fig. 2, b. It is possible to

see the emergence of tongues similar to the traditional

Arnold tongues, but based on high-dimensional 6T tori and

corresponding to the five-frequency 5T regimes. The largest

tongues have cusps on the frequency detuning axis 1. It

should be noted that the resonances are more pronounced

the lower the frequency detuning 1 of the oscillators.

Resonances are also present in the range of five-frequency

5T and four-frequency 4T regimes, but they are less

pronounced. They are practically absent in the three-

and two-frequency regions of 3T and 2T. Thus, resonances

primarily occur in the highest frequency regions.

Another feature of the picture in Fig. 2, b is the appear-

ance of chaos C in the area of overlapping five-frequency

tongues. There was no chaos in Fig. 1. It can be also

seen in the range of 0 < 1 < 10 in Fig. 2, a that chaos is

now possible in the area of localization of three-frequency

tongues 3T — they are immersed in the area of chaos.

However, in general, the areas of chaos are small in size.
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Figure 3. Graphs of Lyapunov exponents along the line

µ = 0.14. Values of parameters: λ1 = 0.5, λ2 = 1, λ3 = 1.5,

λ4 = 2, λ5 = 2.5, ε = 0.1 and β = 1. QSN1,2 — points of saddle-

node bifurcations of the torus.

The resonant nature of quasi-periodic tongues is illus-

trated in Fig. 3. It shows graphs of Lyapunov exponents

along a segment of the horizontal line µ = 0.14 in the range

of 5.1 < 1 < 10.5, intersecting one of the largest tongues

and several small ones. This relationship value is indicated

by an arrow in Fig. 2, b. A six-frequency 6T mode with

zero values 31,2,3,4,5 = 0 is observed on the graphs outside

the resonant regions. The parameters 31,2,3,4 = 0 are zero

inside the resonant regions, and the fifth 35 is negative,

so the five-frequency 5T regime is implemented. At the

same time, the sixth parameter 36 is also negative, and

nowhere near the boundaries of the tongue does it coincide

with 35. According to Ref. [39,40], this is a sign of a

quasi-periodic saddle-node bifurcation of the torus. Such

bifurcations for the largest tongue are marked with arrows in

Fig. 3 and are indicated by QSN1,2 . Also, the corresponding

boundaries of the tongue are marked on the parameter plane

in Fig. 2, b. Thus, we are indeed observing resonant charts.

Their characteristic feature are
”
dips“ of the corresponding

parameter (in this case 35) in the graphs in the negative

area.

The width of the resonant tongues noticeably decreases

on the chart, Fig. 2, a with large frequency detunings

of the order of 1 = 30, and the alternation of regions

characteristic of the Landau-Hopf cascade occurs again with

a variation of the coupling µ. However, the required value

of the frequency detuning 1 increases tenfold compared to

Fig. 1. Thus, a large mutual frequency detuning of the

oscillators is required for the effect of resonances to be

not very significant. But even in this case, there are some

peculiarities. Let’s discuss the observed structure and these

features in more detail.

To do this, let’s turn to the graphs of Lyapunov exponents

depending on the magnitude of the coupling µ at 1 = 30

(right edge of the chart in Fig. 2, a) in the range of

0 < µ < 2 shown in Fig. 4. It is possible to see the presence

of characteristic areas dominated by NT modes with a

corresponding number of zero values and incommensurable

frequencies. For ease of perception, their areas are indicated

in the figure by symbols in circles. Let’s discuss the

observed bifurcations.

The exponent is 31 = 0 in the right part of the figure,

and the rest exponents are negative. In accordance with the

table, a two-frequency 2T regime with an attractor in the

form of an invariant curve is observed. When approaching

the point QH1, the second and third exponents are equal to

each other: 32 = 33. They are negative and increase with

decreasing coupling. Immediately at the point QH1, both

exponents become zero, and then the exponent 32 remains

zero, so now 31,2 = 0, and the exponent 33 goes into the

negative region. In accordance with Ref. [39], the condition

32 = 33 corresponds to the quasi-periodic Hopf bifurcation

QH1, when a two-dimensional torus corresponding to the

three-frequency 3T regime is gently generated from an

invariant curve.

Similarly, when approaching the point QH2, the condition

33 = 34 < 0 is fulfilled, so that a quasi-periodic Hopf

bifurcation of the birth of a three-dimensional torus is

observed, corresponding to the transition from the three-

frequency regime 3T to the four-frequency regime 4T. At

the same time, resonances in the region of two- and three-

frequency regimes and near the point QH2 are not observed.

Therefore, the first stages of the Landau-Hopf cascade are

being implemented in this area.

However, then some peculiarities arise. They are

illustrated by an enlarged fragment of the Figure in the

vicinity of the transition point from the 4T regime to the

five-frequency 5T regime, shown in Fig. 5, a.

When approaching this point on the right, the exponents

31,2,3 = 0, and the exponents 34 and 35 coincide. This

is typical for a quasi-periodic Hopf bifurcation of the

corresponding order. However, in the immediate vicinity
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Figure 4. Graphs of Lyapunov exponents depending on the

magnitude of µ coupling along the line 1 = 30 for β = 1. The

values of the other parameters: λ1 = 0.5, λ2 = 1, λ3 = 1.5, λ4 = 2,

λ5 = 2.5, ε = 0.1.
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Figure 5. Enlarged fragments of Fig. 4: a — the neighborhood of

the transition point from four-frequency to five-frequency regime;

b — the area of six-frequency regimes.

of the transition point, the graphs of exponents 34 and 35

diverge. At the same time, the exponent 35 goes into the

negative region, and the exponent 34 increases, becoming

zero at the point QSN3. In accordance with Ref. [39,40],
this behavior corresponds to the saddle-node bifurcation

of tori. Thus, one of the quasi-periodic Hopf bifurcations

in the Landau-Hopf cascade can be replaced by a saddle-

node bifurcation. However, in the vicinity of the point of

such a bifurcation, the behavior characteristic of a quasi-

periodic Hopf bifurcation persists. So, on a large scale in

Fig. 4 near the point QSN3, the behavior of the exponents is

visually characteristic of the quasi-periodic Hopf bifurcation.

This combined behavior can be explained by the fact that

the Hopf bifurcation point fell into the vicinity of a certain

resonance.

We also note that narrow resonance windows based on

tori of different dimensions are now observed. Characteristic

”
dips“ of the third exponent 33, corresponding to three-

frequency resonances based on a four-frequency 4T torus

can be seen on the magnified Fig. 5, a. The largest of them

is marked with the symbol 31,2, indicating the zero value

of these two exponents. There are several less pronounced

resonances of this type. There are many very small four-

frequency resonances to the left of the point QSN3.

Let’s return to Fig. 4. A quasi-periodic Hopf bifurcation

QH4 occurs again with a further decrease in coupling in

accordance with the condition 35 = 36 producing a six-

frequency 6T mode. It can be noted that very close to

the point QH4, a relatively wide five-frequency resonance is

observed to the left of it, marked in Fig. 4 with an arrow

and signed with the symbol 31,2,3,4 . Generally, resonances

in the six-frequency region are most pronounced. They are

illustrated by an enlarged fragment of graphs in Fig. 5, b.

It is possible to see the area of six-frequency regimes with

31,2,3,4,5 = 0, which has built-in five-frequency resonances

with 31,2,3,4 = 0. Their boundaries are also the points of

saddle-node bifurcations of the QSN tori. An interesting

feature can be seen for the resonant window located on the

right side of Fig. 5, b. There is a (albeit very narrow) area

with 31,2,3 = 0 inside it. Thus, a secondary resonance with

the appearance of a four-frequency torus is possible on the

surface of a resonant five-frequency torus. Characteristic

small islands lying at the intersection of five-frequency

tongues correspond to them on the charts in Fig. 2.

Thus, quasi-periodic resonances based on high-frequency

tori can occur with a certain selection of parameters in

a system with the Landau-Hopf scenario. However, the

resonances are narrow with a sufficiently large frequency

detuning of the oscillators and generally do not destroy the

Landau-Hopf scenario.

3. The case of large values of the
nonlinearity parameter according to
the type of the Duffing oscillator

Now let us increase the value of the additional nonlin-

earity parameter β . It should be noted that the nonlinear

parameter β, from the point of view of oscillatory regimes

in a separate oscillator, is responsible for the deviation of

the shape of the potential
”
well“ from the classical quadratic

one. The resulting oscillations become non-isochronous, i.e.

their period depends on the amplitude. From the point

of view of synchronization, this factor leads to an increase

in the synchronization area, the larger the parameter β, as

indicated in Ref. [34]. Therefore, in the case of large values

of this parameter, one can expect both stronger resonances

and the destruction of quasi-periodic bifurcations due to

them. We will discuss these effects in section 3.

Fig. 6 shows similar to Fig. 4 graphs of Lyapunov

exponents depending on the magnitude of the coupling µ

for β = 2 and 3. In the case of β = 2, Fig. 6, a shows

a cascade of the Neimark-Sacker (NS) bifurcation of an

invariant curve from equilibrium E and quasi-periodic Hopf

bifurcations QH1,2,3 . There are practically no resonances

in this area. A
”
thickening“ sufficiently pronounced four-

frequency resonances is observed on the right as we

approach the higher frequency point QH4 . However, the
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Figure 6. Graphs of Lyapunov exponents depending on the

magnitude of the coupling µ for 1 = 30: a — β = 2, b — β = 3.

Values of the other parameters: λ1 = 0.5, λ2 = 1, λ3 = 1.5, λ4 = 2,

λ5 = 2.5, ε = 0.1.

characteristic condition for a quasi-periodic Hopf bifurcation

35 = 36 is preserved in its vicinity. At the same time, the

six-frequency regime practically does not occur to the left

of this point. There is an irregular alternation of windows of

five- and four-frequency regimes, and even narrow areas of

three-frequency regime and chaos with 31 > 0 are possible.

 ∆
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Figure 7. Chart of Lyapunov exponents for β = 3. The values of the other parameters are similar to Fig. 2.

A five-frequency regime with 31,2,3,4 = 0 is implemented

when the coupling is further reduced, as it approaches the

point µ = 0.

Let’s move on to the case of β = 3, Fig. 6, b. Now, only

points NS and QH1,2 are reliably observed.
”
Accumulation

“ of small three-frequency resonances takes place on the

right in the vicinity of point QH3, and accumulation of four-

frequency resonances takes place on the left. An alternation

of regime windows of different types is again observed

with a further decrease coupling, mainly four-frequency

and chaos, but excluding six-frequency ones. In contrast

to the case of Fig. 6, a, all tori are destroyed with a small

coupling µ— a fairly wide window of chaos C appears.

Fig. 7 shows the Lyapunov chart for the case β = 3.

It should be compared with Fig. 2, a. Dynamics is

observed along the right edge of the chart, corresponding

to the graphs in Fig. 6, b. There are no resonances

in the two-frequency 2T and three-frequency 3T regimes

in the central part of the chart. There are tongues of

three-frequency regimes in the four-frequency range of

4T. Pronounced tongues are not observed below, with a

lower coupling µ, but a somewhat irregular alternation

of regimes occurs. With frequency detunings 1 < 17.7,

six-frequency regimes are restored. It is interesting to

trace the nature of the regimes at small 1 with an

increase in the value of coupling µ. First, a six-frequency

regime is implemented, which switches to a five-frequency

or four-frequency regime. They then collapse to form

chaos. At the same time, the areas of chaos noticeably

increase compared to Fig. 2, a. Another feature is the

appearance of hyperchaos H. With a sufficiently large

coupling, quasi-periodic oscillations are restored immedi-

ately from chaos, and in the form of a two-frequency

2T regime. Thus, large values of additional nonlinearity

of the Duffing oscillator type enhance resonances and

contribute to the destruction of synchronization and the pos-

sible destruction of quasi-periodic bifurcations of invariant

tori.
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Conclusion

The effect of quasi-periodic resonances on the Landau-

Hopf scenario can be studied using the example of an

ensemble of discrete van der Pol oscillators, taking into

account additional nonlinearity of the Duffing oscillator type.

With small frequency detunings of the oscillators, tongues

of quasi-periodic regimes arise, similar to Arnold’s tongues,

and in the region of the highest frequency oscillations. There

is chaos in the area where such tongues overlap. With

a large frequency detuning of the oscillators, the general

structure of Landau-Hopf regime transformation remains,

but the quasi-periodic Hopf bifurcation in the cascade can

be replaced by a saddle-node torus bifurcation in the narrow

vicinity of the bifurcation point. Narrow resonance regions

based on tori of different dimensions are also observed, and

secondary resonances may occur on resonant tori. There

are virtually no resonances for low-dimensional tori. When

the nonlinearity parameter is increased by the type of

Duffing oscillator, resonances can destroy high-dimensional

tori in the Landau-Hopf cascade. At the same time, there

is an irregular alternation of torus windows of different

dimensions and chaos. However, this requires a rather large

amount of nonlinearity.

It should be noted that, due to the universality of

the approaches of nonlinear oscillation theory, the results

obtained may be of interest for various specific fields. Quasi-

periodic oscillations are quite common in radio electronics,

radiophysics, astrophysics, laser physics, climatology, etc.

In this case, there may be situations when multi-frequency

oscillations are observed, characterized by a set of incom-

mensurable frequencies. However, such cases have been

little studied. The influence of certain factors on such

fluctuations and the
”
strength“ of possible resonances is of

interest. The tools and approaches of the nonlinear theory

of oscillations and the theory of dynamical systems are

effective in this case. In this regard, the method of charts of

Lyapunov exponents can serve as universal and informative.
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