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Quasi-periodic resonances and the Landau-Hopf scenario

© A.P. Kuznetsov, Yu.V. Sedova

Saratov Branch, Kotel'nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences,

410019 Saratov, Russia
e-mail: sedovayv@yandex.ru

Received March 25, 2025
Revised June 4, 2025
Accepted June 4, 2025

The effect of resonances on a cascade of quasi-periodic bifurcations, the sequence of which occur in accordance
with the Landau-Hopf scenario, is examined using an ensemble of discrete van der Pol - Duffing oscillators. With
small frequency detunings of the oscillators, tongues of quasi-periodic modes emerge, analogous to Arnold tongues,
and in the region of the highest frequency oscillations. With a large frequency detuning, the general structure of
regimes transformation in accordance with Landau-Hopf scenario remains, but the quasi-periodic Hopf bifurcation
in the cascade can be replaced by a saddle-node bifurcation of torus. Narrow resonance regions based on tori of
different dimensions are also observed. At high values of the Duffing oscillator-like nonlinear parameter, resonances
can destroy high-dimensional tori in the Landau-Hopf cascade.
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Introduction

Quasi-periodic oscillations are quite common in nature
and technology. They can be characterized by different,
sometimes quite a large number of incommensurable fre-
quencies. Such examples can be found in radiophysics
and electronics [1-9], in the theory of Josephson con-
tacts [10-12], mechanics and hydrodynamics [13-18], many
examples are known in astrophysics [19,20], as well as
in other areas. Quasi-periodic oscillations with different
numbers of incommensurable frequencies are also studied
using examples of model discrete systems (maps), in
particular, in Ref. [21-25].

At one time, Landau and Hopf associated the scenario of
the emergence of complex (chaotic) dynamics with quasi-
periodic oscillations [26,27]. The scenario assumes a gradual
increase in the number of incommensurable frequencies
due to the coupling of new oscillatory modes. This
process occurs through a cascade of quasi-periodic Hopf
bifurcations, as a result of which invariant tori of ever higher
dimension are born in the phase space. A general discussion
about such a scenario is discussed in many works, for
example, in Ref. [14-17,28-30].

Formally, the Landau-Hopf scenario assumes an infinite
number of quasi-periodic bifurcations. However, more
realistic situations where the number of bifurcations is
relatively high, but of course, are of considerable interest
from the point of view of the mechanisms of occurrence
of complex oscillations. The Landau-Hopf cascade can
be disrupted by destroying the torus to create chaos.
As you know, Ruel and Takens drew attention to this
point [31], which caused a subsequent discussion and an
active discussion. At the same time, Afraimovich and
Shilnikov found that a two-dimensional two-frequency torus

can collapse with the formation of chaos [32]. However,
there are now known examples of stable tori of sufficiently
high dimension corresponding to four-, five-, and even six-
frequency oscillations [4-6,8-10,18,21,22,24,25].

The cascade of quasi-periodic bifurcations can also be
limited by a finite number of oscillation modes of the
system itself. For example, an ensemble of five self-
oscillating van der Pol oscillators is considered in Ref. [33]
that demonstrates five steps of the Landau-Hopf scenario.
Let us emphasize here the universal character of the van der
Pol system, which describes both a radiophysical generator
and systems of a wide variety of nature, see Ref. [34] and
the review in Ref [35]. Interestingly, the interaction of
the [33] system with an additional chaotic subsystem does
not decrease, but increases the number of quasi-periodic
bifurcations and the possible dimension of the torus [36].

From the point of view of oscillation theory, it seems that
another mechanism for breaking the cascade of Landau-
Hopf bifurcations may be the occurrence of synchronization
and corresponding resonances on high-dimensional tori. It
is this aspect that we will consider in this paper.

As is known, in the simplest case of two-frequency
quasi-periodicity, resonant limit cycles can occur on the
surface of the corresponding attractor in the form of an
invariant torus. This transition is provided by the saddle-
node bifurcation of the limit cycles. In this case, a
structure of Arnold tongues embedded in the region of
quasiperiodicity arises on the parameter plane [34,37,38].
Over time, it became known that synchronization of multi-
frequency quasi-periodic oscillations is also possible, when
a torus of a smaller dimension is born on the surface
of a high-dimensional torus. Such a transition occurs
through the bifurcation of the tori [39,40] caused by the
collision of the stable and saddle tori. Early examples
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for radiophysical generators can be found, for example, in
Ref. [4-6]. At the same time, on the parameter plane, in a
situation of synchronization of multi-frequency oscillations,
a pattern may appear similar to the Arnold tongue system,
but in the form of tongues of quasi-periodic modes. It
has been observed in model maps in Ref [25,41], coupled
radiophysical generators [8,9,42], predator-prey system [43]
and other examples.

In this paper, we will examine the relationship between
the Landau-Hopf bifurcation diagram and potential reso-
nances.

1. Studied system. Case of absence of
resonances

A system of five dissipatively coupled non-identical van
der Pol oscillators was proposed in Ref [33,36] in the
context of the Landau-Hopf scenario. Five steps of the
Landau-Hopf scenario are consistently observed in such a
system, when the coupling value decreases (analogous to
the Reynolds number). As is known, for two coupled Van
der Pol oscillators, high resonances, unlike the main one,
are poorly expressed, especially in the case of small values
of the excitation parameters [44,45]. Therefore, firstly,
we use increased values of these parameters compared to
Ref. [33,36]. Secondly, we will supplement this model with
cubic nonlinearity of the Duffing oscillator type. Physically,
this nonlinearity is responsible for the non-isochronous
nature of small oscillations [34]. In the case of two
oscillators, this leads to a much more pronounced system
of resonant tongues of different orders [46)].

We also use a discrete version of the system to simplify
the analysis. It is obtained by replacing the time derivatives
in the original equations with finite differences. A similar
technique was proposed in early papers on nonlinear
physics [47-49]. 1t is now widely used in a wide variety of
fields: radiophysics, population dynamics, neurodynamics,
theory of gene networks, as well as in describing basic
models of oscillation theory and nonlinear dynamics (a
number of specific examples can be found in the overview
section [25]). Moreover, if we use a small value of the
discretization parameter, then the arrangement of regions
in the parameter space will be very close to the prototype
system with continuous time. At the same time, analyzing
a discrete system is much simpler.

Taking into account these observations, the system under
study has the form

Xin+tl = Xin + EVin+l,

Yin+tl =Yin T 8(/11' _xiz,n)yi,n - 8(1 +Ai—l)xi,n
u 5
3
—epxi, — e Z;(ym ~¥jn) (1)
=

Here x;,, y;, are variables (coordinate and velocity) of
the ith oscillator, 4; is its excitation parameter,  is the
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Figure 1. Chart of Lyapunov exponents of an ensemble of five
discrete van de Pol oscillators (1) for 4 = 0.1, 1, = 0.2, 23 = 0.3,
A = 0.4, 15 = 0.5, ¢ = 0.1. Cubic nonlinearity parameter S = 0.

parameter of additional nonlinearity according to the type
of Duffing oscillator, u is the magnitude of the dissipative
coupling. A;_; = A(i — 1)/4 are frequency detunings of the
oscillators relative to the first one, the frequency of which
is taken as one. In this case, the mutual detunings of
the oscillators are controlled by a single parameter A. In
addition, n is the iteration number, ¢ is the discretization
parameter.

Following Ref. [33,36], we first put 1; = 0.1, 2, = 0.2,
A3 =0.3, 14 = 0.4, 15 = 0.5. Here and further we will use
the small value € = 0.1. For further discussion, we will first
present the case of the absence of additional nonlinearity
B =0. Fig. 1 shows the corresponding chart of Lyapunov
exponents on the frequency detuning coupling value plane
(A, ). On this chart, areas with different dynamics are
indicated in different colors in accordance with the signature
of the spectrum of Lyapunov exponents A,, as indicated in
the table. There are six significant exponents in this table,
the rest are always negative. The interpretation of the color
palette is shown to the right of the picture.

When coupling value u decreases along the right edge
of the chart, with a frequency disorder of A =3, an
equilibrium state E is first observed. Then, as a result of
the Neimark-Sacker bifurcation NS, a stable invariant curve
is separated from it, which corresponds to the birth of the
two-frequency 2T regime. Then, a two-dimensional torus
separates from this curve as a result of quasi-periodic Hopf
bifurcation and a three-frequency 3T regime is born at point
QH;. Next, a cascade of quasi-periodic Hopf bifurcations
QH, 3.4 occurs, with the gradual birth of four-, five-, and
six-frequency regimes 4T, 5T, and 6T. (As we noted, due
to smallness, ¢ the configuration of the regions and the
nature of the bifurcations are similar to the case of the flow
system [33], with the exception of an increase in the number
of frequencies occurring by one, which is typical for discrete
systems.)
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Types of regimes and the Lyapunov exponents spectrum for map

Designation Regime type Type of attractor in the map | Spectrum of Lyapunov exponents

E Equilibrium Fixed point A123456 <0

2T Two-frequency quasi-periodic Invariant curve A1 =0,A23456 <0

3T Three-frequency quasi-periodic Two-dimensional torus A2 =0,A3456 <0

4T Four-frequency quasi-periodic Three-dimensional torus A123=0,A456 <0

5T Five-frequency quasi-periodic Four-dimensional torus ANi1234=0,A56<0

6T Six-frequency quasi-periodic Five-dimensional torus Ai2345=0,A6 <0

C Chaos Chaotic attractor A >0,A23456<0
Hyperchaos Hyperchaotic attractor A12>0,A3456 <0

0 A 30

H

2T

3T

0 16

Figure 2. Chart of Lyapunov exponents of an ensemble of five discrete Van der Pol-Duffing oscillators for § = 1 (a) and its enlarged
fragment (). The arrow marks the value 4 = 0.14 corresponding to the graphs in Fig. 3. Parameter values: 2; = 0.5, 1, = 1, 13 = 1.5,

A=2,25=25,e=0.1

As can be seen from Fig. 1, there are no resonant
regimes (except for the main resonance A = 0) in the case
of small parameters of excitation 4 and in the absence of
additional nonlinearity. At the same time, five steps of the
Landau-Hopf cascade are observed with a sufficiently large
frequency detuning A, with a decrease in the magnitude of
the dissipative coupling u.

2. Case of quasi-periodic resonances

Now let us increase the control parameters so that
=05 =1 23=15 14 =2, 15 =2.5 and select
the value the additional nonlinearity parameter 8 =1 by
analogy with Ref. [46]. The corresponding Lyapunov chart
is shown in Fig. 2,a. Now there are characteristic quasi-
periodic resonances. This is especially noticeable for the
six-frequency region. The corresponding enlarged fragment
of the chart is shown in Fig. 2,b. It is possible to
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see the emergence of tongues similar to the traditional
Arnold tongues, but based on high-dimensional 6T tori and
corresponding to the five-frequency 5T regimes. The largest
tongues have cusps on the frequency detuning axis A. It
should be noted that the resonances are more pronounced
the lower the frequency detuning A of the oscillators.

Resonances are also present in the range of five-frequency
5T and four-frequency 4T regimes, but they are less
pronounced. They are practically absent in the three-
and two-frequency regions of 3T and 2T. Thus, resonances
primarily occur in the highest frequency regions.

Another feature of the picture in Fig. 2,5 is the appear-
ance of chaos C in the area of overlapping five-frequency
tongues. There was no chaos in Fig. 1. It can be also
seen in the range of 0 < A < 10 in Fig. 2,a that chaos is
now possible in the area of localization of three-frequency
tongues 3T — they are immersed in the area of chaos.
However, in general, the areas of chaos are small in size.
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Figure 3. Graphs of Lyapunov exponents along the line
pu =0.14. Values of parameters: 1, =0.5, 1, =1, 43 =1.5,
Ay =2,15=25,e=0.1and B8 =1. QSN;, — points of saddle-
node bifurcations of the torus.

The resonant nature of quasi-periodic tongues is illus-
trated in Fig. 3. It shows graphs of Lyapunov exponents
along a segment of the horizontal line 4 = 0.14 in the range
of 5.1 < A < 10.5, intersecting one of the largest tongues
and several small ones. This relationship value is indicated
by an arrow in Fig. 2,b. A six-frequency 6T mode with
zero values Aj 2345 = 0 is observed on the graphs outside
the resonant regions. The parameters Aj 234 = 0 are zero
inside the resonant regions, and the fifth As is negative,
so the five-frequency ST regime is implemented. At the
same time, the sixth parameter A¢ is also negative, and
nowhere near the boundaries of the tongue does it coincide
with As. According to Ref. [39,40], this is a sign of a
quasi-periodic saddle-node bifurcation of the torus. Such
bifurcations for the largest tongue are marked with arrows in
Fig. 3 and are indicated by QSN ». Also, the corresponding
boundaries of the tongue are marked on the parameter plane
in Fig. 2,b. Thus, we are indeed observing resonant charts.
Their characteristic feature are ,,dips“ of the corresponding
parameter (in this case As) in the graphs in the negative
area.

The width of the resonant tongues noticeably decreases
on the chart, Fig. 2,a with large frequency detunings
of the order of A =30, and the alternation of regions
characteristic of the Landau-Hopf cascade occurs again with
a variation of the coupling u. However, the required value
of the frequency detuning A increases tenfold compared to
Fig. 1. Thus, a large mutual frequency detuning of the
oscillators is required for the effect of resonances to be
not very significant. But even in this case, there are some
peculiarities. Let’s discuss the observed structure and these
features in more detail.

To do this, let’s turn to the graphs of Lyapunov exponents
depending on the magnitude of the coupling u at A =30
(right edge of the chart in Fig. 2,a4) in the range of
0 < u < 2 shown in Fig. 4. It is possible to see the presence

of characteristic areas dominated by NT modes with a
corresponding number of zero values and incommensurable
frequencies. For ease of perception, their areas are indicated
in the figure by symbols in circles. Let’s discuss the
observed bifurcations.

The exponent is A; =0 in the right part of the figure,
and the rest exponents are negative. In accordance with the
table, a two-frequency 2T regime with an attractor in the
form of an invariant curve is observed. When approaching
the point QHj, the second and third exponents are equal to
each other: Ay = Aj. They are negative and increase with
decreasing coupling. Immediately at the point QH;, both
exponents become zero, and then the exponent A, remains
zero, so now Aj, = 0, and the exponent A3 goes into the
negative region. In accordance with Ref. [39], the condition
Ay = Az corresponds to the quasi-periodic Hopf bifurcation
QH;, when a two-dimensional torus corresponding to the
three-frequency 3T regime is gently generated from an
invariant curve.

Similarly, when approaching the point QH,, the condition
Az = A4 <0 is fulfilled, so that a quasi-periodic Hopf
bifurcation of the birth of a three-dimensional torus is
observed, corresponding to the transition from the three-
frequency regime 3T to the four-frequency regime 4T. At
the same time, resonances in the region of two- and three-
frequency regimes and near the point QH; are not observed.
Therefore, the first stages of the Landau-Hopf cascade are
being implemented in this area.

However, then some peculiarities arise.  They are
illustrated by an enlarged fragment of the Figure in the
vicinity of the transition point from the 4T regime to the
five-frequency 5T regime, shown in Fig. 5, a.

When approaching this point on the right, the exponents
A123 =0, and the exponents A4 and As coincide. This
is typical for a quasi-periodic Hopf bifurcation of the
corresponding order. However, in the immediate vicinity
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Figure 4. Graphs of Lyapunov exponents depending on the

magnitude of u coupling along the line A =30 for B = 1. The
values of the other parameters: A; = 0.5, 1, = 1, 13 = 1.5, 24 = 2,
As =2.5,¢=0.1.
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Figure 5. Enlarged fragments of Fig. 4. ¢ — the neighborhood of
the transition point from four-frequency to five-frequency regime;
b — the area of six-frequency regimes.

of the transition point, the graphs of exponents A4 and As
diverge. At the same time, the exponent As goes into the
negative region, and the exponent A4 increases, becoming
zero at the point QSN;. In accordance with Ref. [39,40],
this behavior corresponds to the saddle-node bifurcation
of tori. Thus, one of the quasi-periodic Hopf bifurcations
in the Landau-Hopf cascade can be replaced by a saddle-
node bifurcation. However, in the vicinity of the point of
such a bifurcation, the behavior characteristic of a quasi-
periodic Hopf bifurcation persists. So, on a large scale in
Fig. 4 near the point QSNj3, the behavior of the exponents is
visually characteristic of the quasi-periodic Hopf bifurcation.
This combined behavior can be explained by the fact that
the Hopf bifurcation point fell into the vicinity of a certain
resonance.

We also note that narrow resonance windows based on
tori of different dimensions are now observed. Characteristic
,»dips“ of the third exponent Aj, corresponding to three-
frequency resonances based on a four-frequency 4T torus
can be seen on the magnified Fig. 5,a. The largest of them
is marked with the symbol A;,, indicating the zero value
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of these two exponents. There are several less pronounced
resonances of this type. There are many very small four-
frequency resonances to the left of the point QSNj3.

Let’s return to Fig. 4. A quasi-periodic Hopf bifurcation
QHy4 occurs again with a further decrease in coupling in
accordance with the condition As = Ag producing a six-
frequency 6T mode. It can be noted that very close to
the point QHy4, a relatively wide five-frequency resonance is
observed to the left of it, marked in Fig. 4 with an arrow
and signed with the symbol A 34. Generally, resonances
in the six-frequency region are most pronounced. They are
illustrated by an enlarged fragment of graphs in Fig. 5,b.
It is possible to see the area of six-frequency regimes with
A12.3.45 =0, which has built-in five-frequency resonances
with Aj 234 = 0. Their boundaries are also the points of
saddle-node bifurcations of the QSN tori. An interesting
feature can be seen for the resonant window located on the
right side of Fig. 5,b. There is a (albeit very narrow) area
with Aj 53 = 0 inside it. Thus, a secondary resonance with
the appearance of a four-frequency torus is possible on the
surface of a resonant five-frequency torus. Characteristic
small islands lying at the intersection of five-frequency
tongues correspond to them on the charts in Fig. 2.

Thus, quasi-periodic resonances based on high-frequency
tori can occur with a certain selection of parameters in
a system with the Landau-Hopf scenario. However, the
resonances are narrow with a sufficiently large frequency
detuning of the oscillators and generally do not destroy the
Landau-Hopf scenario.

3. The case of large values of the
nonlinearity parameter according to
the type of the Duffing oscillator

Now let us increase the value of the additional nonlin-
earity parameter 3. It should be noted that the nonlinear
parameter 3, from the point of view of oscillatory regimes
in a separate oscillator, is responsible for the deviation of
the shape of the potential ,,well“ from the classical quadratic
one. The resulting oscillations become non-isochronous, i.e.
their period depends on the amplitude. From the point
of view of synchronization, this factor leads to an increase
in the synchronization area, the larger the parameter 3, as
indicated in Ref. [34]. Therefore, in the case of large values
of this parameter, one can expect both stronger resonances
and the destruction of quasi-periodic bifurcations due to
them. We will discuss these effects in section 3.

Fig. 6 shows similar to Fig. 4 graphs of Lyapunov
exponents depending on the magnitude of the coupling u
for B =2 and 3. In the case of B =2, Fig. 6,a shows
a cascade of the Neimark-Sacker (NS) bifurcation of an
invariant curve from equilibrium E and quasi-periodic Hopf
bifurcations QH; 3. There are practically no resonances
in this area. A ,thickening® sufficiently pronounced four-
frequency resonances is observed on the right as we
approach the higher frequency point QH4. However, the
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Figure 6. Graphs of Lyapunov exponents depending on the
magnitude of the coupling ¢t for A=30:a —B8=2,b—p=3.
Values of the other parameters: 1, = 0.5, 1, = 1,13 = 1.5, 44 = 2,
As =2.5,e=0.1.

characteristic condition for a quasi-periodic Hopf bifurcation
As = Ag is preserved in its vicinity. At the same time, the
six-frequency regime practically does not occur to the left
of this point. There is an irregular alternation of windows of
five- and four-frequency regimes, and even narrow areas of
three-frequency regime and chaos with A; > 0 are possible.

0 30

A

A five-frequency regime with Aj 334 = 0 is implemented
when the coupling is further reduced, as it approaches the
point 4 = 0.

Let’s move on to the case of 8 = 3, Fig. 6,5. Now, only
points NS and QH, , are reliably observed. ,,Accumulation
“ of small three-frequency resonances takes place on the
right in the vicinity of point QH3, and accumulation of four-
frequency resonances takes place on the left. An alternation
of regime windows of different types is again observed
with a further decrease coupling, mainly four-frequency
and chaos, but excluding six-frequency ones. In contrast
to the case of Fig. 6,a, all tori are destroyed with a small
coupling u— a fairly wide window of chaos C appears.

Fig. 7 shows the Lyapunov chart for the case B8 = 3.
It should be compared with Fig. 2,a. Dynamics is
observed along the right edge of the chart, corresponding
to the graphs in Fig. 6,b0. There are no resonances
in the two-frequency 2T and three-frequency 3T regimes
in the central part of the chart. There are tongues of
three-frequency regimes in the four-frequency range of
4T. Pronounced tongues are not observed below, with a
lower coupling u, but a somewhat irregular alternation
of regimes occurs. With frequency detunings A < 17.7,
six-frequency regimes are restored. It is interesting to
trace the nature of the regimes at small A with an
increase in the value of coupling u. First, a six-frequency
regime is implemented, which switches to a five-frequency
or four-frequency regime. They then collapse to form
chaos. At the same time, the areas of chaos noticeably
increase compared to Fig. 2,a. Another feature is the
appearance of hyperchaos H. With a sufficiently large
coupling, quasi-periodic oscillations are restored immedi-
ately from chaos, and in the form of a two-frequency
2T regime. Thus, large values of additional nonlinearity
of the Duffing oscillator type enhance resonances and
contribute to the destruction of synchronization and the pos-
sible destruction of quasi-periodic bifurcations of invariant
tori.

= BE

2T

"
H

Figure 7. Chart of Lyapunov exponents for f = 3. The values of the other parameters are similar to Fig. 2.
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Conclusion

The effect of quasi-periodic resonances on the Landau-
Hopf scenario can be studied using the example of an
ensemble of discrete van der Pol oscillators, taking into
account additional nonlinearity of the Duffing oscillator type.
With small frequency detunings of the oscillators, tongues
of quasi-periodic regimes arise, similar to Arnold’s tongues,
and in the region of the highest frequency oscillations. There
is chaos in the area where such tongues overlap. With
a large frequency detuning of the oscillators, the general
structure of Landau-Hopf regime transformation remains,
but the quasi-periodic Hopf bifurcation in the cascade can
be replaced by a saddle-node torus bifurcation in the narrow
vicinity of the bifurcation point. Narrow resonance regions
based on tori of different dimensions are also observed, and
secondary resonances may occur on resonant tori. There
are virtually no resonances for low-dimensional tori. When
the nonlinearity parameter is increased by the type of
Duffing oscillator, resonances can destroy high-dimensional
tori in the Landau-Hopf cascade. At the same time, there
is an irregular alternation of torus windows of different
dimensions and chaos. However, this requires a rather large
amount of nonlinearity.

It should be noted that, due to the universality of
the approaches of nonlinear oscillation theory, the results
obtained may be of interest for various specific fields. Quasi-
periodic oscillations are quite common in radio electronics,
radiophysics, astrophysics, laser physics, climatology, etc.
In this case, there may be situations when multi-frequency
oscillations are observed, characterized by a set of incom-
mensurable frequencies. However, such cases have been
little studied. The influence of certain factors on such
fluctuations and the ,strength® of possible resonances is of
interest. The tools and approaches of the nonlinear theory
of oscillations and the theory of dynamical systems are
effective in this case. In this regard, the method of charts of
Lyapunov exponents can serve as universal and informative.
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