Machine learning-based predictive modeling for SiC/Si thin film growth
Redkov A.V. 1, Rozhentsev D.V.1, Grashchenko A. S. 1, Osipov A. V. 1, Kukushkin S.A. 1
1Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences, St. Petersburg, Russia
Email: avredkov@gmail.com, asgrashchenko@bk.ru, sergey.a.kukushkin@gmail.com

PDF
We demonstrate the application of machine learning methods for predicting the properties of epitaxial structures in multi-parameter technological processes characterized by complex nonlinear dependencies. The synthesis of silicon carbide thin films on silicon substrates via atomic substitution method was investigated as a model system. A neural network model capable of predicting key characteristics of the resulting SiC films based on synthesis process parameters, including pressure, temperature, substrate type, and other additional synthesis conditions, was developed. Comprehensive optimization of the model architecture was performed followed by validation of prediction accuracy. The high efficiency of machine learning algorithms for analyzing and controlling complex epitaxial processes was demonstrated. Keywords: machine learning, neural network model, epitaxial growth, SiC, Si, atomic substitution method.
  1. N.G. Orji, M. Badaroglu, B.M. Barnes, C. Beitia, B.D. Bunday, U. Celano, R.J. Kline, M. Neisser, Y. Obeng, A.E. Vladar, Nat. Electron., 1 (10), 532 (2018). DOI: 10.1038/s41928-018-0150-9
  2. Y.K. Wakabayashi, T. Otsuka, Y. Krockenberger, H. Sawada, Y. Taniyasu, H. Yamamoto, APL Mater., 7 (10), 101114 (2019). DOI: 10.1063/1.5123019
  3. G. Wu, Y. Wang, Q. Gong, L. Li, X. Wu, IEEE Access, 10, 9848 (2022). DOI: 10.1109/ACCESS.2022.3143811
  4. H. Shi, Z. Jin, W. Tang, J. Wang, K. Jiang, M. Xu, W. Xia, X. Xu, Knowledge-Based Syst., 280, 110994 (2023). DOI: 10.1016/j.knosys.2023.110994
  5. T.C. Kaspar, S. Akers, H.W. Sprueill, A.H. Ter-Petrosyan, J.A. Bilbrey, D. Hopkins, A. Harilal, J. Christudasjustus, P. Gemperline, R.B. Comes, J. Vac. Sci. Technol. A, 43 (3), 032702 (2025). DOI: 10.1116/6.0004493
  6. R.K. Vasudevan, A. Tselev, A.P. Baddorf, S.V. Kalinin, ACS Nano, 8 (10), 10899 (2014). DOI: 10.1021/nn504730n
  7. I. Ohkubo, Z. Hou, J.N. Lee, T. Aizawa, M. Lippmaa, T. Chikyow, K. Tsuda, T. Mori, Mater. Today Phys., 16, 100296 (2021). DOI: 10.1016/j.mtphys.2020.100296
  8. A.V. Redkov, Acta Mater., 287, 120762 (2025). DOI: 10.1016/j.actamat.2025.120762
  9. V.N. Bessolov, D.V. Karpov, E.V. Konenkova, A.A. Lipovskii, A.V. Osipov, A.V. Redkov, I.P. Soshnikov, S.A. Kukushkin, Thin Solid Films, 606, 74 (2016). DOI: 10.1016/j.tsf.2016.03.034
  10. A.V. Redkov, S.A. Kukushkin, Cryst. Growth Des., 20 (4), 2590 (2020). DOI: 10.1021/acs.cgd.9b01721
  11. A. Redkov, Front. Chem., 11, 1189729 (2023). DOI: 10.3389/fchem.2023.1189729
  12. A. Redkov, S. Kukushkin, Faraday Discuss., 235, 362 (2022). DOI: 10.1039/D1FD00083G
  13. A. Redkov, Crystals, 14 (1), 25 (2023). DOI: 10.3390/cryst14010025
  14. S.A. Kukushkin, A.V. Osipov, J. Phys. D, 47, 313001 (2014). DOI: 10.1088/0022-3727/47/31/313001
  15. A.S. Grashchenko, S.A. Kukushkin, A.V. Osipov, A.V. Redkov, Catal. Today, 397, 375 (2022). DOI: 10.1016/j.cattod.2021.08.012
  16. A.V. Redkov, A.S. Grashchenko, S.A. Kukushkin, A.V. Osipov, K.P. Kotlyar, A.I. Likhachev, A.V. Nashchekin, I.P. Soshnikov, Phys. Solid State, 61, 299 (2019). DOI: 10.1134/S1063783419030272
  17. A. Paszke, arXiv:1912.01703 (2019)
  18. T. Akiba, S. Sano, T. Yanase, T. Ohta, M. Koyama, in Proc. of the 25th ACM SIGKDD Int.Conf. on Knowledge Discovery \& Data Mining (Anchorage, USA, 2019), p. 2623--2631. DOI: 10.1145/3292500.3330701
  19. M. Feurer, F. Hutter, in Automated machine learning, ed. by F. Hutter, L. Kotthoff, J. Vanschoren (Springer, Cham, 2019), p. 3--33. DOI: 10.1007/978-3-030-05318-5_1
  20. W.E. Marci lio, D.M. Eler, in 2020 33rd SIBGRAPI Conf. on Graphics, Patterns and Images (SIBGRAPI) (IEEE, 2020), p. 340--347. DOI: 10.1109/SIBGRAPI51738.2020.00053
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru