Application of cellulose paper with controlled electromagnetic characteristics as an interface in microwave photonic crystal
Skripal A. V.
1, Ponomarev D. V.
1, Volshanik M. A.
11Saratov State University, Saratov, Russia
Email: skripala_v@info.sgu.ru
Cellulose paper with controlled electromagnetic characteristics has been used as an interface for microwave photonic crystal. The change in the interface structure, as the introduction of an air gap, at certain values of the cellulose paper layer thickness and the mass fraction of distilled water leads to low frequency shift of the Tamm resonance, while the changes in the resonance amplitudes in the first forbidden band are monotonic, and in the second - non-monotonic. Keywords: microwave absorbers, photonic Tamm resonances, cellulose, water.
- J.T. Orasugh, S.S. Ray, ACS Omega, 8 (9), 8134 (2023). DOI: 10.1021/acsomega.2c05815
- Y. Chen, Y. Yang, Y. Xiong, L. Zhang, W. Xu, G. Duan, C. Mei, S. Jiang, Z. Rui, K. Zhang, Nano Today, 38, 101204 (2021). DOI: 10.1016/j.nantod.2021.101204
- S. Li, W. Li, J. Nie, D. Liu, G. Sui, Carbon, 143, 154 (2019). DOI: 10.1016/j.carbon.2018.11.015
- Y.J. Wan, P.L. Zhu, S.H. Yu, R. Sun, C.P. Wong, W.H. Liao, Carbon, 122, 74 (2017). DOI: 10.1016/j.carbon.2017.06.042
- T.W. Lee, S.E. Lee, Y.G. Jeong, Compos. Sci. Technol., 131, 77 (2016). DOI: 10.1016/j.compscitech.2016.06.003
- Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou, Z. Zhang, Adv. Funct. Mater., 26 (2), 303 (2016). DOI: 10.1002/adfm.201503579
- Z. Zeng, M. Chen, Y. Pei, S.I.S. Shahabadi, B. Che, P. Wang, X. Lu, ACS Appl. Mater. Interfaces, 9 (37), 32211 (2017). DOI: 10.1021/acsami.7b07643
- S.A. Jose, N. Cowan, M. Davidson, G. Godina, I. Smith, J. Xin, P.L. Menezes, Nanomaterials, 15 (5), 356 (2025). DOI: 10.3390/nano15050356
- S. Song, H. Li, P. Liu, X. Peng, Carbohydr. Polym., 287, 119347 (2022). DOI: 10.1016/j.carbpol.2022.119347
- Y. Chen, L. Pang, Y. Li, H. Luo, G. Duan, C. Mei, W. Xu, W. Zhou, K. Liu, S. Jiang, Composites A, 135, 105960 (2020). DOI: 10.1016/j.compositesa.2020.105960
- T.W. Lee, S.E. Lee, Y.G. Jeong, ACS Appl. Mater. Interfaces, 8 (20), 13123 (2016). DOI: 10.1021/acsami.6b02218
- L.P. Wu, Y.Z. Li, B.J. Wang, Z.P. Mao, H. Xu, Y. Zhong, L.-P. Zhang, X.-F. Sui, Mater. Des., 159, 47 (2018). DOI: 10.1016/j.matdes.2018.08.037
- J. Wen, Q. Zhao, R. Peng, H. Yao, Y. Qing, J. Yin, Q. Ren, Opt. Mater. Express, 12 (4), 1461 (2022). DOI: 10.1364/ome.455723
- Y.J. Yoo, S. Ju, S.Y. Park, Y.J. Kim, J. Bong, T. Lim, K.W. Kim, J.Y. Rhee, Y. Lee, Sci. Rep., 5 (1), 14018 (2015). DOI: 10.1038/srep14018
- A.V. Skripal, D.V. Ponomarev, A.A. Komarov, IEEE Trans. Microwave Theory Tech., 68 (12), 5115 (2020). DOI: 10.1109/TMTT.2020.3021412
- A.V. Skripal, D.V. Ponomarev, M.A. Volshanik, Tech. Phys. Lett., 50 (8), 26 (2024). DOI: 10.61011/TPL.2024.08.58911.19880
- D.A. Usanov, A.V. Skripal, A.V. Abramov, A.S. Bogolyubov, Tech. Phys., 51 (5), 644 (2006). DOI: 10.1134/S1063784206050173
- S. Fan, M.F. Yanik, Z. Wang, S. Sandhu, M.L. Povinelli, J. Light. Technol., 24 (12), 4493 (2006). DOI: 10.1109/JLT.2006.886061
- Al.A. Nikitin, An.A. Nikitin, A.B. Ustinov, E. Lahderanta, B.A. Kalinikos, Tech. Phys., 61 (6), 913 (2016). DOI: 10.1134/S106378421606013X
- https://www.cmc.ca/wp-content/uploads/2019/08/Basics_Of _MeasuringDielectrics_5989-2589EN.pdf