Application of cellulose paper with controlled electromagnetic characteristics as an interface in microwave photonic crystal
Skripal A. V. 1, Ponomarev D. V. 1, Volshanik M. A. 1
1Saratov State University, Saratov, Russia
Email: skripala_v@info.sgu.ru

PDF
Cellulose paper with controlled electromagnetic characteristics has been used as an interface for microwave photonic crystal. The change in the interface structure, as the introduction of an air gap, at certain values of the cellulose paper layer thickness and the mass fraction of distilled water leads to low frequency shift of the Tamm resonance, while the changes in the resonance amplitudes in the first forbidden band are monotonic, and in the second - non-monotonic. Keywords: microwave absorbers, photonic Tamm resonances, cellulose, water.
  1. J.T. Orasugh, S.S. Ray, ACS Omega, 8 (9), 8134 (2023). DOI: 10.1021/acsomega.2c05815
  2. Y. Chen, Y. Yang, Y. Xiong, L. Zhang, W. Xu, G. Duan, C. Mei, S. Jiang, Z. Rui, K. Zhang, Nano Today, 38, 101204 (2021). DOI: 10.1016/j.nantod.2021.101204
  3. S. Li, W. Li, J. Nie, D. Liu, G. Sui, Carbon, 143, 154 (2019). DOI: 10.1016/j.carbon.2018.11.015
  4. Y.J. Wan, P.L. Zhu, S.H. Yu, R. Sun, C.P. Wong, W.H. Liao, Carbon, 122, 74 (2017). DOI: 10.1016/j.carbon.2017.06.042
  5. T.W. Lee, S.E. Lee, Y.G. Jeong, Compos. Sci. Technol., 131, 77 (2016). DOI: 10.1016/j.compscitech.2016.06.003
  6. Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou, Z. Zhang, Adv. Funct. Mater., 26 (2), 303 (2016). DOI: 10.1002/adfm.201503579
  7. Z. Zeng, M. Chen, Y. Pei, S.I.S. Shahabadi, B. Che, P. Wang, X. Lu, ACS Appl. Mater. Interfaces, 9 (37), 32211 (2017). DOI: 10.1021/acsami.7b07643
  8. S.A. Jose, N. Cowan, M. Davidson, G. Godina, I. Smith, J. Xin, P.L. Menezes, Nanomaterials, 15 (5), 356 (2025). DOI: 10.3390/nano15050356
  9. S. Song, H. Li, P. Liu, X. Peng, Carbohydr. Polym., 287, 119347 (2022). DOI: 10.1016/j.carbpol.2022.119347
  10. Y. Chen, L. Pang, Y. Li, H. Luo, G. Duan, C. Mei, W. Xu, W. Zhou, K. Liu, S. Jiang, Composites A, 135, 105960 (2020). DOI: 10.1016/j.compositesa.2020.105960
  11. T.W. Lee, S.E. Lee, Y.G. Jeong, ACS Appl. Mater. Interfaces, 8 (20), 13123 (2016). DOI: 10.1021/acsami.6b02218
  12. L.P. Wu, Y.Z. Li, B.J. Wang, Z.P. Mao, H. Xu, Y. Zhong, L.-P. Zhang, X.-F. Sui, Mater. Des., 159, 47 (2018). DOI: 10.1016/j.matdes.2018.08.037
  13. J. Wen, Q. Zhao, R. Peng, H. Yao, Y. Qing, J. Yin, Q. Ren, Opt. Mater. Express, 12 (4), 1461 (2022). DOI: 10.1364/ome.455723
  14. Y.J. Yoo, S. Ju, S.Y. Park, Y.J. Kim, J. Bong, T. Lim, K.W. Kim, J.Y. Rhee, Y. Lee, Sci. Rep., 5 (1), 14018 (2015). DOI: 10.1038/srep14018
  15. A.V. Skripal, D.V. Ponomarev, A.A. Komarov, IEEE Trans. Microwave Theory Tech., 68 (12), 5115 (2020). DOI: 10.1109/TMTT.2020.3021412
  16. A.V. Skripal, D.V. Ponomarev, M.A. Volshanik, Tech. Phys. Lett., 50 (8), 26 (2024). DOI: 10.61011/TPL.2024.08.58911.19880
  17. D.A. Usanov, A.V. Skripal, A.V. Abramov, A.S. Bogolyubov, Tech. Phys., 51 (5), 644 (2006). DOI: 10.1134/S1063784206050173
  18. S. Fan, M.F. Yanik, Z. Wang, S. Sandhu, M.L. Povinelli, J. Light. Technol., 24 (12), 4493 (2006). DOI: 10.1109/JLT.2006.886061
  19. Al.A. Nikitin, An.A. Nikitin, A.B. Ustinov, E. Lahderanta, B.A. Kalinikos, Tech. Phys., 61 (6), 913 (2016). DOI: 10.1134/S106378421606013X
  20. https://www.cmc.ca/wp-content/uploads/2019/08/Basics_Of _MeasuringDielectrics_5989-2589EN.pdf
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru