Competing types of electron emission in a grid plasma emitter based on a low-pressure arc
Kartavtsov R. A.1, Mokeev M. A.1, Vorobyov M. S.1,2, Grishkov A. A.1, Koval N. N.1, Doroshkevich S. Yu.1, Moskvin P. V.1, Gorkovskaia D. A.1
1Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia
2Tomsk Polytechnic University, Tomsk, Russia
Email: maks_mok@mail.ru
In this work, we have studied electron emission in an electron source with a grid plasma emitter and plasma anode with an open plasma boundary over a wide range of parameter variations. The competition between two types of electron emission from the surface of cathode electrodes of grid plasma emitters under the impact of accelerated ions coming from the accelerating gap has been experimentally demonstrated. The paper shows that the increase in the accelerating-gap current leads to current redistribution in the grid plasma emitters and is accompanied by an increase in the ion-electron emission current and proportional decrease in the cathode-spot electron emission current down to zero. Keywords: plasma electron source, low-pressure arc, ion-electron emission, cathode spot, anode plasma. DOI: 10.21883/0000000000
- N.N. Koval, E.M. Oks, Yu.S. Protasov, N.N. Semashko, Emissionnaya elektronika (MGTU im. N.E. Baumana, M., 2009). (in Russian)
- V.A. Burdovits, A.S. Klimov, A.V. Medovnik, E.M. Oks, Yu.G. Yushkov, Forvakuumnye plazmennye istochniki elektronov (Izd-vo Tomsk. un-ta, Tomsk, 2014). (in Russian)
- V.E. Gromov, Yu.F. Ivanov, S.V. Vorobiev, S.V. Konovalov, Fatigue of steels modified by high intensity electron beams (Cambridge, 2015)
- V.E. Gromov, Yu.F. Ivanov, A.M. Glezer, V.E. Kormyshev, S.V. Konovalov, Bull. Russ. Acad. Sci. Phys., 81 (11), 1353 (2017). DOI: 10.3103/S1062873817110107
- N.N. Koval, V.N. Devyatkov, M.S. Vorobyev, Russ. Phys. J., 63 (10), 1651 (2021). DOI: 10.1007/s11182-021-02219-3
- Elektronno-ionno-plazmennaya modifikatsiya poverkhnostey tsvetnykh metallov i splavov, pod obshch. red. N.N. Kovalya, Yu.F. Ivanova (Izd-v0 NTL, Tomsk, 2016). (in Russian)
- V.N. Devyatkov, N.N. Koval, P.M. Schanin, V.P. Grigoryev, T.V. Koval, Laser Part. Beams, 21 (2), 243 (2003). DOI: 10.1017/S026303460321212X
- P.V. Moskvin, M.S. Vorobyov, A.A. Grishkov, M.S. Torba, V.I. Shin, N.N. Koval, S.Yu. Doroshkevich, R.A. Kartavtsov, Tech. Phys. Lett., 49 (6), 38 (2023). DOI: 10.61011/TPL.2023.06.56376.19557
- R.A. Kartavtsov, M.A. Mokeev, M.S. Vorobyov, P.V. Moskvin, S.Yu. Doroshkevich, N.N. Koval, A.A. Grishkov, V.N. Devyatkov, M.S. Torba, Tech. Phys. Lett., 51 (2), 70 (2025). DOI: 10.61011/TPL.2025.02.60636.20104
- S.V. Grigor'ev, V.N. Devyatkov, N.N. Koval., A.D. Teresov, Tech. Phys. Lett., 36 (2), 158 (2010). DOI: 10.1134/S1063785010020203
- V.A. Gruzdev, Yu.E. Kreyndel, Yu.M. Larin, TVT, 11 (3), 482 (1973). (in Russian)
- M.A. Zav'yalov, Yu.E. Kreyndel, A.A. Novikov, L.P. Shanturin, Plazmennye protsessy v tekhnologicheskikh elektronnykh pushkakh (Energoatomizdat, M., 1989). (in Russian)
- Yu.A. Burachevskii, V.A. Burdovitsin, A.V. Mytnikov, E.M. Oks, Tech. Phys., 46 (2), 179 (2001). DOI: 10.1134/1.1349272
- N.V. Gavrilov, D.R. Emlin, A.S. Kamenetskikh, Tech. Phys., 53 (10), 1308 (2008). DOI: 10.1134/S1063784208100083
- S.V. Grigor'ev, P.V. Moskvin, Izv. vuzov. Fizika, 59 (9), 59 (2016). (in Russian)
- V.N. Devyatkov, N.N. Koval, Izv. vuzov. Fizika, 61 (9), 3 (2018). (in Russian)
- P.V. Moskvin, S.S. Kovalsky, M.S. Vorobyov, J. Phys.: Conf. Ser., 1115 (2), 022004 (2018). DOI: 10.1088/1742-6596/1115/2/022004
- M.S. Vorobyov, P.V. Moskvin, V.I. Shin, T.V. Koval, V.N. Devyatkov, N.N. Koval, K.T. Ashurova, S.Yu. Doroshkevich, M.S. Torba, V.A. Levanisov, High. Temp., 60 (4), 438 (2022). DOI: 10.1134/S0018151X22040162
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.