Slyadnikov E.E.1,2, Turchanovsky I.Yu.1
1Federal Research Center for Information and Computing Technologies, Novosibirsk, Russia
2Tomsk State University of Control Systems and Radioelectronics, Tomsk, Russia
Email: eeslyadnikov@gmail.com
On the basis of the first and second laws of thermodynamics, it was shown that dynamics of the first-order non-equilibrium structural transition from a low-temperature elastic (glassy state) into a high-temperature inelastic state (supercooled liquid state) during electric current pulse propagation was described by the generalized Landau-Khalatnikov equation for a short-range order parameter. This equation describes a structural transformation that, on the one hand, is stimulated by the current pulse energy impact and, on the other hand, takes place in a stress field. The proposed non-equilibrium transition model was used to formulate a physical picture (including causes, conditions and mechanism) of an electroplastic deformation effect in amorphous metal alloys under mechanical load when an electric current pulse is passed, analyze experimental findings, and evaluate physical properties leading to this effect. Keywords: amorphous metal alloys, electroplastic deformation, mathematical model, electric current pulse, non-equilibrium structural transition.
- S.A. Sidorov, V.A. Fedorov, T.N. Pluzhnikova and others. Vestnik Tambovskogo gos.un-ta. Seriya: estestvennye i tekhnicheskie nauki, 17 (1), 135 (2012) (in Russian)
- V.A. Fedorov, T.N. Pluzhnikova, S.A. Sidorov. Izvestiya vuz. Chernaya metallurgiya, 12, 62 (2013) (in Russian)
- V.A. Feodorov, T.N. Plushnikova, S.A. Sidorov, A.V. Yakovlev. Mater. Phys. Mechanics, 20 (1), 67 (2014)
- D.Yu. Fedorov, S.A. Sidorov, V.A. Fedorov, T.N. Pluzhnikova, A.V. Yakovlev. Izvestiya vuz. Chernaya metallurgiya, 60, 7 (538) (in Russian)
- M. Stoica, J. Das, J. Bednarcik, H. Franz, N. Mattern, W.H. Wang, J. Eckert. J. Appl. Phys., 104, 013522 (2008)
- K. Sudzuki, K. Khudzimori, K. Khasimoto. Amorfnye Metally (Metallurgiya, M., 1987), 328 p. (in Russian)
- A.M. Glezer, N.A. Shurygina. Amorfno-nanokristallicheskiye splavy (Fizmatlit, M., 2013), 452 p. (in Russian)
- G.E. Abrosimova. UFN, 181 (12), 1265 (2011) (in Russian)
- L. D. Landau, E. M. Lifshitz. Teoreticheskaya fizika v 10 tomakh. T. 6 Gidrodinamika (Fizmatlit, M., 2001) (in Russian)
- B.D. Coleman, M.E. Gurtin. J. Chem. Phys., 47, 597 (1967)
- J.R. Rice. J. Mech. Phys. Solids, 19, 433 (1971)
- L.D. Landau, E.M. Lifshitz. Statisticheskaya fizika (Nauka, M., 1976) ch. I, (t. V), 584 s. (in Russian)
- G.A. Malygin. UFN, 171 (2), 187 (2001) (in Russian)
- H Haken. Sinergetika (Mir, M., 1980), 406 s. (in Russian)
- I. Prigozhin. R. Defay. Khimicheskaya termodinamika (Nauka, Novosibirsk, 1966), 510 s. (in Russian)
- Bouchbinder Eran, J.S. Langer. Phys. Rev. E, 80, 031131 (2009)
- E.E. Slyadnikov, I.Yu. Turchanovskiy. ZhTF 93, 1 (104) (in Russian). (2023). DOI: 10.21883/JTF.2023.01.54069.114-22
- E.E. Slyadnikov, Yu.A. Hon, P.P. Kaminsky, I.Yu. Turchanovsky. ZhTF, 88 (3), 374 (2018) (in Russian). DOI: 10.21883/JTF.2018.03.45593.2347
- E.E. Slyadnikov, I.Yu. Turchanovskiy. ZhTF 90, 7 (1136) (in Russian). (2020). DOI: 10.21883/JTF.2020.07.49448.299-19
- E.E. Slyadnikov, Yu.A. Hon, P.P. Kaminsky, I.Yu. Turchanovsky. IFZh, 93 (2), 403 (2020) (in Russian)
- S.Yu. Korostelev, E.E. Slyadnikov, I.Yu. Turchanovskiy. Izvestiya vuzov. Fizika, 65 (8), 49 (2022) (in Russian)
- O.A. Troitsky. Chernaya metallurgiya, 60, 7 (538) (in Russian). Byulleten nauchno-tekhnicheskoy informatsii, 9, 65 (2018).(in Russian)
- L.D. Landau, E.M. Lifshitz. Teoriya uprugosti (Nauka, M., 1987), 247 p. (in Russian)
- Y.I. Frenkel. Kineticheskaya teoriya zhidkostey (Nauka LO, L., 1975) (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.